Note: You will turn this page in for a quiz grade. Make sure you write down everything I do and that you complete the other problems.

I Maurer Weebly . Com

Ex: Use completing the square to create a complete graph of $y = -16x^2 + 64x + 250$

Your turn: Use completing the square to create a complete graph of $y = -6x^2 + 36x + 20$ $-6(x^2 - 6x) + 20$

Complete the Square $-6(x^2-6x)+20$ $-6(x^2-6$

Mathematicians work very hard to figure out easier ways to solve problems. Completing the square takes time, is kind of hard, and is easy to make mistakes on. Is there a way we can solve the problem once and for all? Is there a formula we can use?

We will derive the quadratic formula side-by-side with an example. Please focus on how the letters move around in the formula EXACTLY how the numbers do in the example.

	•	
	Example $3x^2 - 24x - 64$	Formula CLX2+bx+C
	3(x2-8x)-64	$a(x^2+bx)+c$
	-8=-4, (-4) ² =16,0-16=-16	$\frac{\frac{1}{2}a - \frac{1}{2}b}{2}(\frac{1}{2}a)^{2} - \frac{1}{4}a^{2} - \frac{1}{4}a^{2} - \frac{1}{4}a^{2}$
	$3((x-4)^2-16)-64$	$a(x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+c$
	3(x-4)2-48-64	$\frac{(x+b)^{2}-b}{(a(x+b)^{2}-b+c)=0}$
\ 1.Ø	$\frac{[3(x-4)^2-112]=0}{+112+112}$	Vo (-by -ba+c) +244 -C +62-(
Ve	(4,-112) +112 +112	Vol 3a, 4a 3 44 2
:	$\frac{3(x-4)^2=1/2}{3}$	$(2)^{2} = \frac{5^{2}}{4a} - \frac{64a}{1.4a}$
	$(\chi-4)^2=37.3$	$\frac{(\chi + \frac{b}{7a})^2 - \frac{b^2 - 4ac}{4a}}{a}$
	$X - 4 = \pm \sqrt{37.3}$	2 L ² -1/4c
	X-4=6.($\left(X + \frac{b}{2a}\right)^2 = \frac{b^2 - 4ac}{4a^2}$
	X=10.1 X-4=-6.1	$X + \frac{b}{2a} = + \sqrt{\frac{b^2 - 4aC}{4a^2}}$
	x=-Z1	- h - 1

Ex: Solve $y = 3x^2 - 5x - 123 = 0$ using the quadratic formula

Your turn: Solve $y = 7x^2 + 15x - 3 = 0$ with the quadratic formula