Day 21: Fractional Exponent Investigation

I. Consider the following pattern:

A. Fill in the blanks based off of the examples.

1

E. Based on your observations from part D, try to evaluate the following without your calculator.

F. Look back at parts D and E to complete the following symbolic rule in *radical form*:

II. **Practice:**

- A. Rewrite in radical form, then simplify completely.
 - a. $100^{\frac{1}{2}} =$ b. $125^{\frac{1}{3}} =$ c. $17^{\frac{1}{2}} =$

d.
$$64^{\frac{1}{3}} =$$
 e. $16^{\frac{1}{4}} =$ f. $16^{\frac{3}{4}} =$

g.
$$\left(8^{\frac{1}{2}}\right)^2 =$$
 h. $\left(8^{\frac{1}{3}}\right)^3 =$ i. $\left(8^4\right)^{\frac{1}{4}} =$

Notes: Fractional Exponents with a numerator $\neq 1$

B. Rewrite in exponential form, then simplify completely.

- a. $\sqrt{81} =$ b. $\sqrt[3]{125} =$ c. $\sqrt[4]{20} =$
- d. $\sqrt[3]{-64} =$ e. $\sqrt[3]{8} =$ f. $(\sqrt[3]{x})^4 =$
- g. $(\sqrt{98})^2 =$ h. $(\sqrt[3]{98})^3 =$ i. $(\sqrt[4]{98})^4 =$

III. Extension:

Based on what you have learned, evaluate the following without a calculator.

a.
$$(27)^{\frac{2}{3}}$$
 b. 1^{35} c. $\left(\frac{1}{32}\right)^{\frac{1}{5}}$
d. $(-27)^{-\frac{2}{3}}$ e. $4^{2.5}$ f. $\left(\frac{1}{16}\right)^{\frac{3}{4}}$
g. $216^{\frac{1}{3}}$ h. $16^{\frac{1}{4}}$ i. $25^{\frac{3}{2}}$ =
j. $(x^{6})^{\frac{1}{2}}$ k. $(9x^{2})^{0.5}$ = 1. $(4x^{0.5})^{0.5}$ =

m.
$$\left(\left(8x^3\right)^2\right)^{\frac{1}{3}} =$$
 n. $\left(9x^{-5}y^2\right)^{\frac{-1}{2}} =$ o. $\left(\left(-4x^3y^{-2}\right)^3\right)^{-0.5} =$

<u>Summarize:</u> In your own words, summarize how to simplify the following types of exponents:

- a. Zero Exponents, like 2^0 .
- b. Negative Exponents, like 3⁻².
- c. Fractional Exponents, like $(4)^{\frac{1}{2}}$.