Name:

Solving Quadratics by Undoing

Many quadratic equations can be solved by undoing operations on both sides of the equation. These quadratics are in what is called **vertex form** (more on that in Unit 2). Remember that these equations often have **2 solutions** (but can also have 1 or no solutions).

	<u>^</u>			NT (* 1			
Example.	Compare	these two	equations	Notice how	similar th	ne steps for	solving are
	o o nipai o		oquaatono.	1101100 11011		ie etepe iei	ooning alo.

Algebra $3(x+5) - 2 = 25$	Words	Algebra $3(x+5)^2 - 2 = 25$	Words
Check your solution(s)		Check your solution(s)	

Remember that solving an equation means finding a number (or numbers) that make the equation true. You can feel confident in your solution(s) by plugging in the value(s).

Solve the following equations and check your answers.

- x + 5 = 30 $x^2 + 5 = 30$
- 2(x+5) = 32 $2(x+5)^2 = 32$
- -3(x+5)+1 = -26 $-3(x+5)^2+1 = -26$

Not all quadratic equations are written in **vertex form.** When they are in **standard form** or in **factored form**, we use different techniques to solve them. Below are examples of each form:

Vertex Form	Standard Form	Factored Form
$-5(x-3)^2 - 3 = -122$	$x^2 - 4x - 5 = 0$	-3(x-5)(3x-2) = 0
$(x+1)^2 - 5 = 31$	$x^2 + 7x + 12 = 0$	(x+5)(x+2) = 0
You can solve by undoing	You cannot solve by undoing	You cannot solve by undoing
because "x" is isolated	because "x" is in two	because "x" is in two
	locations	locations

The following quadratic equations are mixed up. Your task is to **identify** what form the equation is in, and then **solve** the equations in **vertex form.** If you finish early, try to reach back in your memory bank and remember how to solve equations in **standard form** or **factored form.**

$(x-3)^2 + 2 = 11$	$x^2 - 7x - 8 = 0$	$3(x+5)^2 = 48$
(x-3)(x+5) = 0	$x^2 - 9 = 0$	$x^2 - 9x - 22 = 0$
$-5(x-7)^2 + 5 = 0$	2(x+5)(x-3) = 0	$-2(x+3)^2+7=-1$

Write yourself a summary of what you have learned about solving quadratic equations: