Day 31: Solving Quadratic Equations

Remember that a quadration	equation has a degree of _	So y = (x + 1)(x	– 3), which is in "fa	ctored form", is a		
quadratic because when yo	u multiply it out, you would	get y =	(standard form).			
Today we are going to practice finding the x-intercepts, also called Think about why they would b						
called zeros Sometimes y	ou will see directions in a te	xtbook say, "Solve the	quadratic equation	n". This also mean	ıs to	
find the x-intercepts (A.K.A zeros). To find the x-intercept of any equation, you can plug in for y.						
First try this:	Solve: ab = 0	a =,	b =			
Why?						
This is called the						
Solve						

Sol	ve.		

1. $(x-4)(x-2) = y$	2.	(x-5)(x+7)=0
3. $(2x-6)(x+8)=0$	4.	(5x + 35)(3x + 2) = y

Now, let's try problems that are in factored form, but look a little different.

Ex 1: Solve:
$$3n(n - 5) = 0$$

Ex 2: Find the zeros:
$$x(3x + 2) = 0$$

You try: Find the zeros.

5.
$$a(a + 5) = 0$$

6.
$$5s(s-7)=0$$

7.
$$2x(2x - 1) = y$$

8.
$$(x-9)(x+10)=0$$

9.
$$(x + 11)(x - 6) = 0$$

9.
$$(x + 11)(x - 6) = 0$$
 10. $y = (2x + 4)(3x - 15)$

Factoring out a GCF to Solve

Ex: 2 and 3 are factors of the product 6; 2, 3, x and y are factors of the product 6xy

Why is it important to factor? Because it take a complex expression and make it ______.

When we factor, we look for the GREATEST Common Factor (GCF).

Example: Factor the expression 8x + 4.

The greatest common factor for 8x and 4, is 4.

If we divide each monomial by 4 we are left with 2x and 1, so the factored expression is now 4(2x+1). This is

You try: Factor each expression.

called factored form.

Example: Factor the expression $6x^2y + 14x^3y - 42x^4yz$

You try: Factor each expression.

4.
$$4x^4 + 24x^3$$

5.
$$2x^2 - 8x$$

6.
$$5x^3 + 30x^2 - 15x$$

Let's combine the two concepts we've learned today (solving with the **Zero Product Property** and **Factoring out a GCF**) to solve quadratic equations.

Solve equation by factoring.

1)
$$20b^2 + 300b = 0$$

2)
$$17k^2 - 221k = 0$$

3)
$$14x^2 + 14x = 0$$

4)
$$9k^2 + 81k = 0$$

5)
$$3a^2 - 27a = 0$$

6)
$$15m^2 + 165m = 0$$

7)
$$16r^2 - 192r = 0$$

8)
$$9p^2 - 90p = 0$$

9)
$$14m^2 - 168m = 0$$

10)
$$20n^2 - 280n = 0$$