Day 31: Solving Quadratic Equations

Remember that a quadratic equation has a degree of \qquad . So $y=(x+1)(x-3)$, which is in "factored form", is a quadratic because when you multiply it out, you would get $y=$ \qquad (standard form).

Today we are going to practice finding the x-intercepts, also called \qquad . Think about why they would be called zeros.... Sometimes you will see directions in a textbook say, "Solve the quadratic equation". This also means to find the x-intercepts (A.K.A.- zeros). To find the x-intercept of any equation, you can plug \qquad in for y.

First try this:

Solve: $a b=0$
$\mathrm{a}=$ \qquad , \qquad

Why?

This is called the \qquad .

Solve.

1. $\quad(x-4)(x-2)=y$	$2 . \quad(x-5)(x+7)=0$	
3.	$(2 x-6)(x+8)=0$	4.

Now, let's try problems that are in factored form, but look a little different.

Ex 1: Solve: $3 n(n-5)=0$
Ex 2: Find the zeros: $x(3 x+2)=0$

You try: Find the zeros.
5. $a(a+5)=0$
6. $5 s(s-7)=0$
7. $2 x(2 x-1)=y$
8. $(x-9)(x+10)=0$
9. $(x+11)(x-6)=0$
10. $y=(2 x+4)(3 x-15)$

Factoring out a GCF to Solve

Factor: numbers or variables we multiply together to get a \qquad
Ex: 2 and 3 are factors of the product $6 ; 2,3, x$ and y are factors of the product 6xy

Why is it important to factor? Because it take a complex expression and make it \qquad .

When we factor, we look for the GREATEST Common Factor (GCF).

Example: Factor the expression $8 \mathrm{x}+4$.
The greatest common factor for $8 x$ and 4 , is 4 .
If we divide each monomial by 4 we are left with $2 x$ and 1 , so the factored expression is now $\mathbf{4 (2 x + 1)}$. This is called factored form.

You try: Factor each expression.

1. $5 x+25$
2. $2 x+10$
3. $12 x+30$

Example: Factor the expression $6 x^{2} y+14 x^{3} y-42 x^{4} y z$

You try: Factor each expression.
4. $4 x^{4}+24 x^{3}$
5. $2 x^{2}-8 x$
6. $5 x^{3}+30 x^{2}-15 x$

Let's combine the two concepts we've learned today (solving with the Zero Product Property and Factoring out a GCF) to solve quadratic equations.

Solve equation by factoring.

1) $20 b^{2}+300 b=0$
2) $17 k^{2}-221 k=0$
3) $14 x^{2}+14 x=0$
4) $9 k^{2}+81 k=0$
5) $3 a^{2}-27 a=0$
6) $15 m^{2}+165 m=0$
7) $16 r^{2}-192 r=0$
8) $9 p^{2}-90 p=0$
9) $14 m^{2}-168 m=0$
10) $20 n^{2}-280 n=0$
