Today we are going to investigate whether a distribution is symmetric or skewed, and determine which measure of center best represents a *typical* number, and which measure of variability best represents the distribution.

Reminders:

- Distributions are either skewed or symmetrical.
- We represent distributions with dot plots, histograms, and box plots.
- Mean is the average, median is the middle number, mode is the most common number.
- Standard deviation and Interquartile Range (IQR) both measure the variability.

When measuring variability...

- Standard Deviation is the best measure if the distribution is symmetrical
- Interquartile Range is the best measure if the distribution is skewed

I went on Zillow.com to find the prices of 25 houses for sale near CHS. Here are the reported prices (in thousands of dollars):

700	534	470	869	695	2850	735	995	440	1200	600	520	490
750	500	629	329	569	400	475	600	665	569	390	384	

1. Below I created a **dot plot** of the distribution. **Draw** a **box plot** using the same number line, above the dot plot (remember you can use the TI-84 calculator to help you find the numbers needed to create the box plot!).

Housing Prices near CHS (in the thousands \$)

2. Some of the prices are pretty similar to each other, and the dot plot makes it look like almost every house has a different price. Another way to represent a distribution is with a **histogram**. A histogram is like a dot plot, but instead of each individual number getting a dot, you count how many dots are in an interval. We will use an interval size of 100.

a. First, count how many houses fit into each **interval**.

300-399	400-499	500-599	600-699	700-799	800-899	900-999	<u>></u> 1000

b. Draw your histogram in the space below.

- **3**. Calculate the measures of center (median, mode, and the mean) of the distribution.
- 4. Would you describe the distribution as more symmetric or skewed?

5. What do you think is the best estimate for the price of a *typical* house near CHS (**mean or median**)? Justify your answer.

6. Calculate the standard deviation and interquartile range of the distribution.

7. What do you think is the best estimate for the variability of houses near CHS (interquartile range or standard deviation)? Justify your answer.

- **8**. Imagine that the outlier housing prices were NOT included in our data.
 - **a.** Which of the three measures of center do you think will change? Which will stay the same? Explain your thinking.
 - **b.** Which of the two measures of variability (standard deviation or interquartile range) will change? Which will stay the same? Explain your thinking.
 - **c.** Now that the outliers aren't included, which measure of variability do you think is a better measure of variability?
 - **d.** Fill in the blanks in the sentences:
 - Because ______ distributions pull the mean in the direction of the tail, the ______
 is a better measure of center.
 - ii. Because ______ distributions have the mean in the center of the distribution, the ______ is the best measure of a typical data point.
 - iii. Because ______ distributions have values that are spread far in one direction, but clustered in the other, the ______ is a better measure of variability.
 - iv. Because ______ distributions have values that are centrally clustered, the

_____ is a better measure of variability.