1. A helicopter is flying at an elevation of 256 feet above the Columbia River when it releases a package. The equation $p(x)=-16 x^{2}+256$ describes the height of the package $p(x)$, in feet, and the time x, in seconds.
a. Find the maximum height of the package
b. Find when the package hits the water
c. Draw a graph of the package's flight.
2. I'm trying to work on my long jump, so I go to the football field to practice. The equation $h(x)=\frac{-1}{5} x^{2}+\frac{28}{5} x-\frac{187}{5}$ represents the height of my feet above the ground $h(x)$, in feet, and the horizontal distance from the endzone x, in yards.
a. Find the maximum height of the jump
b. Find when I am on the ground
c. Can I jump farther than 5 yards?
3. During the last snowstorm, I went down to the Hawthorne Bridge and threw off a snowball. The equation $s(x)=-16 x^{2}+64 x+48$ describes the height of the snowball $s(x)$, in feet, and the time x, in seconds.
a. Find the maximum height of the snowball.
b. Find when it hits the water
c. Find when the snowball is 64 feet high.
4. I can mow a lawn in 30 minutes and Ms. Boubel can mow a lawn in 40 minutes. Working together, the equation $\mathrm{m}(\mathrm{x})=\frac{x}{30}+\frac{x}{40}$ represents how many lawns we can mow, $\mathrm{m}(\mathrm{x})$, in x minutes.
a. How long will it take for us to mow 1 lawn?
b. How long will it take to mow between 3 and 5 lawns?
c. How many lawns can we mow in 4 to 8 hours?
5. Manufacturers of ball bearings need them to be almost perfectly identical, otherwise they will not rotate smoothly. Ball bearings are in the shape of a sphere, so the volume of a ball bearing is $V(x)=\frac{4}{3} \pi x^{3}$, where $V(x)$ is the volume in mm^{3} and x is the radius in $m m$.
a. If the radius can be between 9 mm and 11 mm , what are the possible volumes?
b. If the possible volumes can be between $4100 \mathrm{~mm}^{3}$ and $4300 \mathrm{~mm}^{3}$, what are the possible radii?
6. Some statisticians define an outlier as a value that is greater than 1.5 standard deviations away from the mean. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15 .
a. Write the range of IQ scores that are defined as outliers
b. Use an absolute value to write an inequality that describes the outliers.
7. A parabola has the equation $f(x)=x^{2}+b x-21$ and has a solution of $x=7$ and $x=a$. Find the values of a and b.
