

- 2. I'm trying to work on my long jump, so I go to the football field to practice. The equation $h(x) = \frac{-1}{5}x^2 + \frac{28}{5}x - \frac{187}{5}$ represents the height of my feet above the ground h(x), in feet, and the horizontal distance from the endzone x, in yards. $(-\frac{1}{5}\chi^2 + \frac{28}{5}\chi - \frac{18}{5})$
 - a. Find the maximum height of the jump
 - b. Find when I am on the ground
 - c. Can I jump farther than 5 yards?

- x2-28x+187=0 (x-11)(x-17)=0 x=11, x=17 Max height: h= 11+17-25-14 Max height: h= 128(14)-187=18
- During the last snowstorm, I went down to the Hawthorne Bridge and threw off a snowball. The equation $s(x) = -16x^2 + 64x + 48$ describes the height of the snowball s(x), -16x2+64x+48=0 in feet, and the time x, in seconds.
 - a. Find the maximum height of the snowball.
 - b. Find when it hits the water
 - c. Find when the snowball is 64 feet high.

c. Find when the snowball is 64 feet high.

a) Max height
$$\stackrel{\circ}{,} S(l_05) = 108$$
 feet

b) Hits water $\stackrel{\circ}{,} \times = 4$ seconds

c) $-16 \times ^2 + 64 \times + 48 = 64$
 $-16 \times ^2 + 9 \times - 3 = -4$

- x2-4x-3=0 (x-4)(x+1)=0 x=4, x=-15(15) = -16(1.5)2+64(1.5)+48=108
- 4. I can mow a lawn in 30 minutes and Ms. Boubel can mow a lawn in 40 minutes. Working together, the equation $m(x) = \frac{x}{30} + \frac{x}{40}$ represents how many lawns we can mow, m(x), $(200) = \frac{2}{30} + \frac{2}{40} \longrightarrow 30 = 2130$ in x minutes.

- a. How long will it take for us to mow 1 lawn? b. How long will it take to mow between 3 and 5 lawns?
- c. How many lawns can we mow in 4 to 8 hours?

17.14 = x) 17.14mintes

1100 = 40× +30×

- 5. Manufacturers of ball bearings need them to be almost perfectly identical, otherwise they will not rotate smoothly. Ball bearings are in the shape of a sphere, so the volume of a ball bearing is $V(x) = \frac{4}{3} \pi x^3$, where V(x) is the volume in mm³ and x is the radius in mm.
 - a. If the radius can be between 9 mm and 11 mm, what are the possible volumes?

b. If the possible volumes can be between 4100 mm³ and 4300 mm³, what are the

possible radii? (a) $V(9) = \frac{4}{3}\pi.9^3 = 3053.6$ b) $\frac{4100}{3} = \frac{4}{3}\pi.x^3$, $\frac{4300}{3} = \frac{4}{3}\pi.x^3$ $V(11) = \frac{4}{3}\pi.11^3 = 5575.3$ $978.8 = x^3$, $1026.5 = x^3$ 3633.6 $<\sqrt{(x)}<3575$, 3 | 9 93< \times < 10.08 6. Some statisticians define an outlier as a value that is greater than 1.5 standard

- deviations away from the mean. IQ scores are normally distributed with a mean of 100 and a standard deviation of 15.
 - a. Write the range of IQ scores that are defined as outliers
 - b. Use an absolute value to write an inequality that describes the outliers.

a)
$$1.5 \cdot 15 = 22.5$$

 $4 + 100 > 22.5$
 $97.5 \cdot 100 \cdot 122.5$
 $\times < 97.5 \cdot 00 \times > 122.5$

7. A parabola has the equation $f(x) = x^2 + bx - 21$ and has a solution of x = 7 and x = a. Find the values of a and b.

values of a and b.
$$because 7 is solution$$

$$f(7) = 7^{2} + b(7) - 21 = 0$$

$$49 + 7b - 21 = 0$$

$$28 + 7b = 0$$

$$7b = -28$$

$$b = -4$$

$$2 - 4x - 21$$

$$(x - 7)(x + 3)$$

$$x = 7 = -3$$

$$4 = -3$$