\qquad
Part 1: Write the expression that fits each blank. Then name the transformation(s).
$f(x)=x^{2}$
$g(x)=|x|$
$h(x)=\sqrt{x}$
$j(x)=x^{3}$
$k(x)=\sqrt[3]{x}$

Expression	$f(x+2)=\ldots$	$2 g(x)=\ldots$	$h(x)-4=\ldots$	$j(0.1 x)=\ldots$
Transformation				
Expression:	$2 k(x-1)=\ldots$	$g(2 x)+4=\ldots(x-5))=\ldots$	$4 h(x)+3=\square$	
Transformation				

Part 2: Write the equation for each function described below:

1. Parent Quadratic function $\left(y=x^{2}\right)$ is reflected over the x-axis, translated down 4 units and left 2 units.
2. Parent Cubic function $\left(y=x^{3}\right)$ is stretched vertically by a factor of 3 , translated right 5 units and up 1 unit.
3. Parent Square Root function $(y=\sqrt{x})$ is reflected over the y-axis, compressed vertically by a factor of $\frac{1}{2}$ and translated left 4 units.
4. Parent Cube Root function ($y=\sqrt[3]{x}$) is reflected over the y-axis, compressed horizontally by a factor of 8 and translated up 3.
5. Parent Absolute Value function ($y=|x|$) is stretched vertically by a factor of 2, translated right 3 units and reflected over the x-axis.
6. Parent Linear function $(y=x)$ is reflected over the x-axis, stretched vertically by a factor of 4 and translated right 2 units.
$f(x)=x^{2}$
$g(x)=|x|$
$h(x)=\sqrt{x}$
$j(x)=x^{3}$
$k(x)=\sqrt[3]{x}$
$\left.\begin{array}{|l|l|l|l|l|}\hline \text { Expression } & f(x+2)=(x+2)^{2} & 2 g(x)=2|x| & h(x)-4=\sqrt{x}-4 & j(0.1 x)=(0.1 x)^{2} \\ \hline \text { Transformation } & \begin{array}{l}\text { Horizontal Translations } \\ \text { Left 2 }\end{array} & \begin{array}{l}\text { Vertical Stretch by } \\ \text { Factor of 2 }\end{array} & \begin{array}{l}\text { Vertical Translation } \\ \text { Down 4 }\end{array} & \begin{array}{l}\text { Horizontal Stretch } \\ \text { by Factor of 0.1 }\end{array} \\ \hline \text { Expression: } & 2 k(x-1)=2 \sqrt[3]{x-1} & g(2 x)+4=|2 x|+4 & f(2(x-5))=(2(x-5))^{2} & -4 h(x)+3=4 \sqrt{x}+3 \\ \hline \text { Transformation } & \begin{array}{l}\text { Vertical Stretch by 2 } \\ \text { and Horiztonal } \\ \text { Translation Right 4 }\end{array} & \begin{array}{l}\text { Horizontal } \\ \text { Compression by 2 } \\ \text { and Vertical } \\ \text { Translation Up 4 }\end{array} & \begin{array}{l}\text { Horizontal } \\ \text { Compression by 2 } \\ \text { and Horizontal } \\ \text { Translation Right 5 }\end{array} & \begin{array}{l}\text { Vertical Refletction, } \\ \text { Vertical Stretch by } \\ \text { Trand Vertical }\end{array} \\ \text { Translation Up 3 }\end{array}\right\}$

Part 2: Write the equation for each function described below:

1. Parent Quadratic function ($y=x^{2}$) is reflected over the x-axis, translated down 4 units and left 2 units. $y=-(x+2)^{2}-4$
2. Parent Cubic function ($y=x^{3}$) is stretched vertically by a factor of 3 , translated right 5 units and up 1 unit. $y=(3(x-5))^{3}+1$
3. Parent Square Root function $(y=\sqrt{x})$ is reflected over the y-axis, compressed vertically by a factor of $\frac{1}{2}$ and translated left 4 units.
$y=\frac{1}{2} \sqrt{-(x+4)}$
4. Parent Cube Root function ($y=\sqrt[3]{x}$) is reflected over the y-axis, compressed horizontally by a factor of 8 and translated up 3.
$y=\sqrt[3]{-8 x}+3$
5. Parent Absolute Value function ($y=|x|$) is stretched vertically by a factor of 2, translated right 3 units and reflected over the x-axis.
$y=-2|x-3|$
6. Parent Linear function $(y=x)$ is reflected over the x-axis, dilated vertically by a factor of 4 and translated right 2 units.
