AA4: Logarithms

Questions					Notes
I can write an exponential equation from: 1. A table					
x	0	2	4	6	
y	4	12	36	108	
	grap		d in yea ibu rce	that pays is ry 2 hours.	
I can translate between exponential and logarithmic forms. 1. Write $y=4^{x}$ in logarithmic form. 2. Write $y=\log _{3} x$ in exponential form.					
I can find the inverses of exponential and logarithmic functions. 1. FInd the inverse of $f(x)=2\left(5^{x}\right)-2$ 2. Find the inverse of $g(x)=2 \log _{8}(x+1)$					

I can solve equations using the definition of exponents and logarithms.

1. Solve for x :
a. $3^{x}+4=31$
b. $2\left(5^{4 x}\right)-1=249$
2. Solve for x :
a. $\quad \log _{10}(x+2)=2$
b. $0.25 \log _{4}(3 x)-5=11$

I can graph and find characteristics (intercepts, asymptotes) of exponential and logarithmic functions.

1. Find the y-intercept and horizontal asymptote of $k(x)=3\left(2^{x}\right)-12$
2. Find the x -intercept(s) and vertical asymptote of $m(x)=2 \log _{4}(x+2)-6$

I can solve problems using exponential and logarithmic functions.

1. You drink a beverage with 120 mg of caffeine. Each hour, the caffeine in your system decreases by about 12%. How long until you have 10 mg of caffeine?
2. A cup of water reaches boiling point at $100^{\circ} \mathrm{C}$ and cools to $50^{\circ} \mathrm{C}$ in 15 minutes. If room temperature is $18.3^{\circ} \mathrm{C}$, how long will it take the water to fall below $37^{\circ} \mathrm{C}$?
