Question	าร	Notes			
		onential equ	uation from	:	
1. A	0	2	4	6	
у	4	12	36	108	
y	'	12		100	
2. A	graph				
(0, 18	8)				
15					
10	(2, 8)				
	(2, 0)				
5					
(4	(8, 0.7)	(6, 1.58)	2)		
0	5	10	15		
3. A	descripti a. \$10		sted in a fu	ınd that pays	
		interest ev			
		00 mg dose			
	me	tabolized 5	5 percent e	very 2 hours.	
can tran	ıslate bet	ween expo	nential and	logarithmic	
orms. 1. W	/rite <i>y</i> = 4	₁² in logarith	mic form.		
	•	_			
2. W	/rite $y = l$	$\log_{3}x$ in exp	oonential fo	rm.	
can find	the inve	rses of expo	onential an	d logarithmic	
unctions		verse of $f(x)$			
1. 11	ina the in	iverse or $f(x)$	() – 2(3)	2	

2. Find the inverse of $g(x) = 2log_8(x+1)$

I can solve equations using the definition of exponents and logarithms. 1. Solve for x: a. $3^x + 4 = 31$ b. $2(5^{4x}) - 1 = 249$ 2. Solve for x: a. $log_{10}(x + 2) = 2$ b. $0.25 \log_4(3x) - 5 = 11$ I can graph and find characteristics (intercepts, asymptotes) of exponential and logarithmic functions. 1. Find the y-intercept and horizontal asymptote of $k(x) = 3(2^x) - 12$ 2. Find the x-intercept(s) and vertical asymptote of $m(x) = 2log_4(x+2) - 6$ I can solve problems using exponential and logarithmic functions. 1. You drink a beverage with 120 mg of caffeine. Each hour, the caffeine in your system decreases by about 12%. How long until you have 10mg of caffeine? 2. A cup of water reaches boiling point at $100^{\circ}C$ and cools to $50^{\circ}C$ in 15 minutes. If room temperature is $18.3^{\circ}C$, how long will it take

the water to fall below $37^{\circ}C$?