1. What is the degree of the polynomial $f(x) = 5(x-2)^2(x+4)(x-5)^3$? Explain how you know.

2. What is the leading coefficient of $f(x) = 5(x-2)^2(x+4)(x-5)^3$

- 3. a. Explain why $5x^6 \to \infty$ as $x \to \pm \infty$.
 - b. Hence, describe the END BEHAVIOR of $f(x) = 5(x-2)^2(x+4)(x-5)^3$.
- 4. What is the degree and leading coefficient of $g(x) = -10x(x-3)^4$?
- 5. a. Explain why $-10x^5 \rightarrow \infty$ as $x \rightarrow -\infty$ and $-10x^5 \rightarrow -\infty$ as $x \rightarrow \infty$.
 - b. Hence, describe the END BEHAVIOR of $g(x) = -10x(x-3)^4$.

6. GENERALIZATION:

END BEHAVIOR of polynomial depends on the DEGREE (odd or even) and LEADING COEFFICIENT (positive or negative). Complete the table:

Degree	Leading Coefficient	END BEHAVIOR
ODD	Positive	
ODD	Negative	
EVEN	Positive	
EVEN	Negative	

PART 2: MULTIPLICITY

7. What are the roots of $f(x) = 0.0055(x-2)^2(x+1)(x-8)^3$?

8. What is the MULTIPLICITY of <u>each</u> root from #7?

9. The graph of $f(x) = 0.0055(x-2)^2(x+1)(x-8)^3$ is shown below. The BEHAVIOR AT A ROOT depends on the MULTIPLICITY. Describe what the function looks like AT THE ROOT for each x-intercept. Use the MULTIPLICITY as a reference for your description.

- Which function best fits the graph shown? Explain your choice.
 - a. $f(x) = x(x+5)^2(x+2)^3$
 - b. $f(x) = x^2(x+5)^3(x+2)^3($
 - c. $f(x) = x^3(x+5)(x+2)^2$
 - d. $f(x) = x(x+5)^3(x+2)^2$

