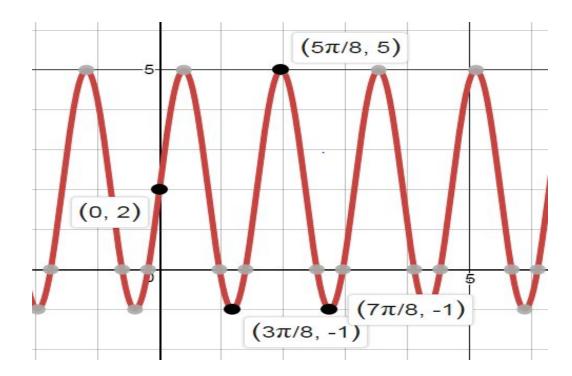
Trig Review Packet

Name:_____


C Level: NO CALC

- 1. Consider the trigonometric function (in radians) $f(x) = 7 \sin(4x) 11$.
 - a. What is the Amplitude of the function?
 - b. What is the period of the function (in radians)? Explain how you know.
 - c. What is the midline of the function?
 - d. What is the range of the function? ($\# \le y \le \#$)
- 2. Consider the trigonometric function (in degrees) $g(x) = -2\cos(6x) + 3$
 - a. What is the Amplitude of the function?
 - b. What is the period of the function (in degrees)? Explain how you know.
 - c. What is the midline of the function?
 - d. What is the range of the function? ($\# \le y \le \#$)

Number of radians of rotation, θ	Quadrant/Ax is	Measure of Reference Angle, in radians	<i>cos</i> (θ)	sin (θ)	$tan(\theta)$
$\frac{\pi}{6}$					
$\frac{3\pi}{2}$					
$\frac{21\pi}{6}$					
$-\frac{2\pi}{3}$					

3. Use the Unit Circle to complete the table:

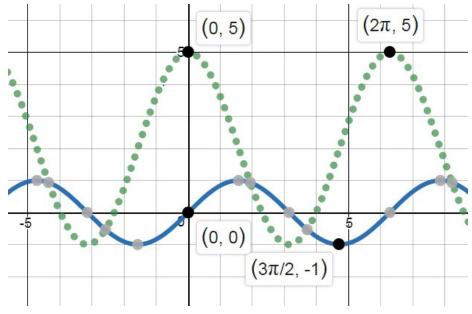
4. Find an equation (in radians) of the function shown: y = #sin(#x) +

A/B Level Questions: NO CALC

5. Suppose θ represents a number of radians of rotation. Use the unit circle to find the first 3 positive and first 3 negative solutions to the equation $sin(\theta) = \frac{1}{2}$. Explain how you found your answers.

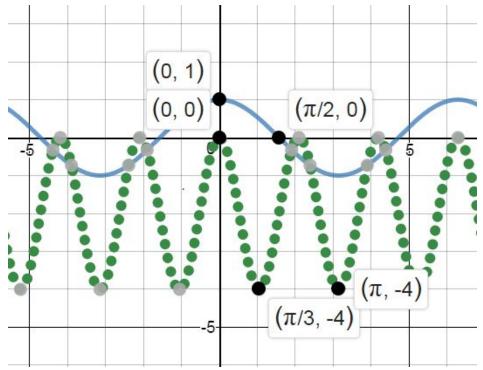
6. Suppose θ represents a number of degrees of rotation. Use the unit circle to find the first 3 positive and first 3 negative solutions to the equation $tan(\theta) = 1$. Explain how you found your answers

7. Use the Amplitude, Frequency, Horizontal shift and midline to write an equation for each function described below:


a. A Ferris wheel completes a rotation in 720 seconds and has a radius of 25 meters. The lowest point on the Ferris wheel is 5 meters above the ground -- in degrees.

b. A trig function has its first positive maximum at (7, 12); first positive minimum at (21,0) -- use radians.

c. A trig function has a vertical asymptote at every multiple of $\frac{\pi}{2}$. It also has the property that f($\frac{\pi}{2}$) = 0. Use radians.


8. The solid graph is sinx.

- a. Find a, b, h, k, so that f(x) = asin(b(x-h))+k is the dotted graph
- b. Find a, b, h, k, so that g(x) = acos(b(x-h))+k is the dotted graph

9. The solid graph is cosx.

- a. Find a, b, h, k, so that f(x) = asin(b(x-h))+k is the dotted graph
- b. Find a, b, h, k, so that g(x) = acos(b(x-h))+k is the dotted graph

