1. A HORIZONTAL ASYMPTOTE for a function are values of y that the function approaches when $x \rightarrow \infty \quad$ or $x \rightarrow-\infty$ but never quite reach.
a. For the function $g(x)=4 \cdot(3)^{x}+1$, what would happen to the value of y for large values of x ? For example, what is $g(1000)$ or $g(1,000,000)$? What about very small values of x ? $g(-1000)$ or $g(-1,000,000)$?
b. Based on (a), what is the horizontal asymptote for $g(x)$?
c. What would be the horizontal asymptote of $m(x)=10 \cdot(0.8)^{x}-4$? Explain how you know.
d. What would be the horizontal asymptote of $f(x)=b(m)^{x}+k$?
2. A VERTICAL ASYMPTOTE for a function are values of x that make $y \rightarrow \infty$ or $y \rightarrow-\infty$ (so these values of x are NOT in the DOMAIN).
a. For the function $g^{-1}(x)=\log _{3}\left(\frac{x-1}{4}\right)$, for what value of x would $g^{-1}(x)$ be undefined [Hint: what is $\log _{3}(0)$?] ?
b. Based on (a), what is the vertical asymptote for $g^{-1}(x)$?
c. What would be the vertical asymptote of $n(x)=\log _{5}(x+2)-3$? Explain how you know.
3. Some functions move AWAY from an asymptote (as x gets larger), and some functions move TOWARDS an asymptote (as x gets larger). Which functions below do you think move TOWARDS their asymptote (choose all that apply)? Explain your choices.

$$
f(x)=14(1.19)^{x} \quad g(x)=20(0.80)^{\frac{x}{2}}-3 \quad h(x)=20(3)^{-x} \quad j(x)=20(4)^{3 x}+1
$$

4. Similarly, some functions move AWAY from an asymptote (as y gets larger), and some functions move TOWARDS an asymptote (as y gets larger). Which functions below do you think move TOWARDS their asymptote? (Choose all that apply). Explain your choices.

$$
f(x)=\log _{1.19}\left(\frac{x}{14}\right) \quad g(x)=2 \log _{0.80}\left(\frac{x+3}{20}\right) \quad h(x)=-\log _{3}\left(\frac{x}{20}\right) \quad j(x)=\log _{4}\left(\frac{x-1}{20}\right) \div 3
$$

