Comparing Compounds

You go to the bank and are offered a choice: How many times a year do you want your money to be compounded? You make tables to compare the different compounding periods. Assume you have $\$ 1000$ and earn 12% interest.

If you have 12% interest, that becomes 0.12 as a decimal. That is your ANNUAL interest. To change it to your compound interest, divide by " n " (the number of compounds in a year).

Compounded Semi-Annually ($n=2$)$0.12 \div 2=0.06$				Compounded Quarterly ($\mathrm{n}=4$)$0.12 \div 4=0.03$			
Month	Start	Interest	End	Month	Start	Interest	End
1	1000	0	1000	1	1000	0	1000
2	1000	0	1000	2	1000	0	1000
3	1000	0	1000	3	1000	30	1030
4	1000	0	1000	4	1030	0	1030
5	1000	0	1000	5	1030	0	1030
6	1000	60	1060	6	1030	30.90	1060.90
7	1060	0	1060	7	1060.90	0	1060.9
8	1060	0	1060	8	1060.9	0	1060.9
9	1060	0	1060	9	1060.9	31.83	1092.73
10	1060	0	1060	10	1092.73	0	1092.73
11	1060	0	1060	11	1092.73	0	1092.73
12	1060	63.6	1123.60	12	1092.73	32.78	1125.51

Please notice that there are a lot of months where you DO NOT earn interest. This is what the words "semi-annually" and "quarterly" mean. You do not earn interest every month. For semi-annually, you earn interest every 6 months. That is why the majority of months have the number 0 in the interest column. For quarterly, you earn interest every 3 months.

You can verify the final row in the table by using the compound interest formula: $F=P\left(1+\frac{r}{n}\right)^{n x}$

$F=1000\left(1+\frac{0.12}{2}\right)^{2 \cdot 1}=1123.6$	$F=1000\left(1+\frac{0.12}{4}\right)^{4 \cdot 1}=1125.51$

