I can find the INVERSE of a function algebraically. The first step to finding the inverse of $h(x) = \sqrt{2x+1} + 5$ is to switch the and the to form the equation Then solve this equation for by Reversing Operations.	I can find the INVERSE from a given table. The table representing the inverse $f^{-1}(x)$ can be created by
I can graph the INVERSE from a given graph.	I can use a graph to determine whether or not a RELATION is a FUNCTION.
To draw the INVERSE, I locate on the original graph and switch the and the and	The Line Test shows that a RELATION is a function if any line hits the graph in AT MOST point.
graph these new points.	penni
$ \begin{array}{c} $	

I can use a table to determine whether or not a RELATION is a FUNCTION.					ether	or	I can use COMPOSITE FUNCTIONS to determine whether on not two functions are INVERSES.
If a table has repeated values that have different values then the table						ave	$f(x) = 2\sqrt{x-1} + 2$ and $g(x) = (\frac{x-2}{2})^2 + 1$ The COMPOSITE FUNCTION $f(g(x))$ means you
If each value in a table has only one					only or	ne	replace the x in with
value then the table							
x y	×	y	×	y	×	y	
3 3	5	31 28	2	3	7	10	If two functions are INVERSES then $f(g(x))$
5 7		25	4		9	30	simplifies to This makes sense because
5 9	8	22	5	3	9	40	if two functions are INVERSES, combining the two
6 11	9	19	6	3	10	50	
							functions should

Function Practice: Let $f(x) = (x-3)^3 + 5$ and $g(x) = \sqrt[3]{x-5} + 3$

Find the following:

1. <i>f</i> (3)	2. <i>g</i> (5)	3. <i>g</i> (<i>f</i> (0))	4. <i>f</i> (<i>g</i> (4))

Solve the following:

5. $f(x) = 5$	6. $g(x) = 3$	7. $f(x) = 4$	8. $g(x) = 0$
J . $f(x) = 3$	U. $g(x) = 3$	$I \cdot f(x) = 4$	0. $g(x) = 0$

Simplify the following:

9. f(g(x)) **10.** g(f(x))