AA3: Inverses Notes

I can use a table to determine whether or not a RELATION is a FUNCTION.

If a table has repeated \qquad values that have different \qquad values then the table

If each		value in a table has only one					
value then the table							
x	y	\times	y	\times	y	x	y
3	3	5	31	2	3	7	10
4	5	6	28	3	3	8	20
5	7	7	25	4	3	9	30
5	9	8	22	5	3	9	40
6	11	9	19	6	3	10	50

I can use COMPOSITE FUNCTIONS to determine whether on not two functions are INVERSES.
$f(x)=2 \sqrt{x-1}+2$ and $g(x)=\left(\frac{x-2}{2}\right)^{2}+1$
The COMPOSITE FUNCTION $f(g(x))$ means you replace the x in \qquad with \qquad If two functions are INVERSES then $f(g(x))$ simplifies to \qquad . This makes sense because if two functions are INVERSES, combining the two functions should \qquad -

Function Practice: Let $f(x)=(x-3)^{3}+5$ and $g(x)=\sqrt[3]{x-5}+3$

Find the following:

1. $f(3)$
2. $g(5)$
3. $g(f(0))$
4. $f(g(4))$

Solve the following:
5. $f(x)=5$
6. $g(x)=3$
7. $f(x)=4$
8. $g(x)=0$

Simplify the following:
9. $f(g(x))$
10. $g(f(x))$

