Complete work in your math notebook.

1. Absolute Value Equations
a. Evaluate or solve each of the following:

- $|4|=$?
- $|-4|=$?
- $|x+3|=$? when $x=-10$
- $|x|=1, x=$? [2 answers]
- $|x|=-2, x=$?
- $|x-1|=0, x=?$
b. What does it mean to take the Absolute Value of a number, for example, |-32|.
c. To solve equations with Absolute Value, you need to understand that $|5|=|-5|=5$. Watch the screencast on Solving Absolute Value Equations. Then practice on the problems below.
i. $\quad|x-4|=2$
ii. $\quad|x+5|-3=10$
iii. $\quad 2|x-1|+4=10$
iv. $\quad-4|x+1|+7=-13$
v. $\quad-4|x+1|+7=7$
vi. $\quad-4|x+1|+7=27$

2. Rational Equations (Equations involving fractions)
a. Solve each equation below by first removing the fractions.
i. $\quad \frac{x}{3}+1=\frac{5}{2}$
ii. $\quad \frac{2 x}{5}+\frac{1}{20}=\frac{x}{10}$
iii. $\quad \frac{(x-4)^{2}}{2}+1=\frac{11}{2}$
iv. $\quad \frac{2|x-1|}{3}-\frac{1}{6}=2$
v. $\quad\left(\frac{2}{3} x+1\right)\left(\frac{x}{5}-\frac{1}{10}\right)=0$
b. Rational Equations can also have the variables in the denominator of the fraction. Consider the equation $\frac{5}{x}+3=\frac{2}{x}$. What operation would remove the fractions in this problem?
c. Simplify the equation $\frac{5}{x}+3=\frac{2}{x}$ by removing the fractions and then solve.
3. More Rational Equations:
a. $\quad \frac{1}{x}+\frac{6}{5 x}=1$
b. $\frac{1}{x^{2}}+\frac{1}{x}=\frac{1}{2 x^{2}}$
c. $\quad x+1=\frac{72}{x}$
d. $\quad x+\frac{x-1}{x-3}=\frac{2}{x-3}$
4. Consider the equation $\frac{1}{x-1}+\frac{1}{x}=\frac{-1}{x(x-1)}$.
a. What would you need to multiply the equation by to remove the fractions?
b. Explain, based on your answer to part (a), why the equation above can be changed to $x+x-1=-1$.
c. Solve this equation for x.
d. Check your solution by plugging the value of x into the original equation. What happened? This is called an extraneous solution.
e. Show that $\frac{1}{x-2}+\frac{1}{x+2}=\frac{4}{(x-2)(x+2)}$ has an extraneous solution.
f. Use desmos.com or the TI-84 to check the solutions in parts (c) and (e). What is it about the graphs that creates an extraneous solution? Explain fully.
