CCSS Algebra 4

How do I solve Trigonometric Equations?

1. Using a graph.

Consider the function f(x) = 3sin(x) - 1.

- Open desmos.com (or use the TI-84 Calculator) and graph f(x).
 - What part(s) of the graph are you looking for if you are trying to solve the equation 3sin(x) 1 = 2?
- To help you visualize the solutions to this equation, graph the function y = 2 on a separate line in desmos (or on the calculator).
 - How does this help you see the solutions to

$$3sin(x) - 1 = 2$$
 ?

- How many solutions are there to the equation 3sin(x) 1 = 2? How can you tell?
- What if the equation was written as $3sin(x) - 1 = 2, -2\pi \le x \le 2\pi$? What does the condition $-2\pi \le x \le 2\pi$ tell you about the solutions?
- If using desmos, graph the inequality $-2\pi \le x \le 2\pi$ on a separate line. How does this help you recognize the solutions for the equation?
- Use a similar strategy to solve each inequality below:
 - \circ $-4\cos(2x) 3 = -7, \quad 0 \le x \le 4\pi$
 - $\circ \quad 2\sin(3x) = \sqrt{2}, \quad -\pi \le x \le \pi$
 - $cos(4(x-\pi)) 1 = 0, \ 0 \le x \le 2\pi$

2. Using a Unit Circle

Again consider the equation

 $3sin(x) - 1 = 2, -2\pi \le x \le 2\pi$

• Reverse operations to solve for x in the form $x = sin^{-1}(#)$.

- Use the Unit Circle to find two solutions to this equation by locating appropriate coordinate points on the circle (recall that the x-coordinates correspond to cosine and y-coordinates to sine.
 - How could you find a 3rd and 4th solution to this equation?
 - How could you find negative solutions to this equation?
 - Explain the following statement, If x = A is a solution to the equation 3sin(x) - 1 = 2, then $A + 2\pi$ and $A - 2\pi$ are also solutions.
 - Would $A + 4\pi$ and $A 4\pi$ also be solutions? Explain why or why not.
 - How could you find all of the solutions that fit the constraint $-2\pi \le x \le 2\pi$?
- What if the equation is more challenging? Consider

$$4\cos(2x-\pi)-1=1$$

- Reverse operations to solve the equation for x in the form $x = \frac{\cos^{-1}(\#) + \#}{\#}$
- Use the Unit Circle to find 2 solutions to $cos^{-1}(\#)$ from your equation. How could you use those solutions to find 2 solutions for *x*?
- How could you find additional solutions for x?
- Use a similar strategy to solve each of the following:
 - $2\sin(3x) + 4 = 4, \quad 0 \le x \le 2\pi$
 - $-\cos(x-\pi) = \frac{\sqrt{3}}{2}, -4\pi \le x \le 0$

3. Using the Calculator

Solve the equation 3sin(x) - 1 = 2 using the inverse sine function on the calculator.

- What mode should you be in?
- What answer does the calculator give?
- How can you find more answers?