1. Using a graph.

Consider the function $f(x)=3 \sin (x)-1$.

- Open desmos.com (or use the TI-84 Calculator) and graph $f(x)$.
- What part(s) of the graph are you looking for if you are trying to solve the equation

$$
3 \sin (x)-1=2 \quad ?
$$

- To help you visualize the solutions to this equation, graph the function $y=2$ on a separate line in desmos (or on the calculator).
- How does this help you see the solutions to

$$
3 \sin (x)-1=2 \quad ?
$$

- How many solutions are there to the equation $3 \sin (x)-1=2$? How can you tell?
- What if the equation was written as

$$
3 \sin (x)-1=2,-2 \pi \leq x \leq 2 \pi \quad ?
$$

What does the condition $-2 \pi \leq x \leq 2 \pi$ tell you about the solutions?

- If using desmos, graph the inequality $-2 \pi \leq x \leq 2 \pi$ on a separate line. How does this help you recognize the solutions for the equation?
- Use a similar strategy to solve each inequality below:

$$
\begin{aligned}
& -4 \cos (2 x)-3=-7, \quad 0 \leq x \leq 4 \pi \\
& \text { - } 2 \sin (3 x)=\sqrt{2}, \quad-\pi \leq x \leq \pi \\
& -\quad \cos (4(x-\pi))-1=0,0 \leq x \leq 2 \pi
\end{aligned}
$$

2. Using a Unit Circle

Again consider the equation

$$
3 \sin (x)-1=2,-2 \pi \leq x \leq 2 \pi
$$

- Reverse operations to solve for x in the form $x=\sin ^{-1}(\#)$.
- Use the Unit Circle to find two solutions to this equation by locating appropriate coordinate points on the circle (recall that the x-coordinates correspond to cosine and y-coordinates to sine.
- How could you find a 3rd and 4th solution to this equation?
- How could you find negative solutions to this equation?
- Explain the following statement,

If $x=A$ is a solution to the equation $3 \sin (x)-1=2$, then $A+2 \pi$ and $A-2 \pi$ are also solutions.

- Would $A+4 \pi$ and $A-4 \pi$ also be solutions? Explain why or why not.
- How could you find all of the solutions that fit the constraint $-2 \pi \leq x \leq 2 \pi$?
- What if the equation is more challenging? Consider

$$
4 \cos (2 x-\pi)-1=1
$$

- Reverse operations to solve the equation for x in the form $x=\frac{\cos ^{-1}(\#)+\#}{\#}$
- Use the Unit Circle to find 2 solutions to $\cos ^{-1}(\#)$ from your equation. How could you use those solutions to find 2 solutions for x ?
- How could you find additional solutions for x ?
- Use a similar strategy to solve each of the following:
- $2 \sin (3 x)+4=4, \quad 0 \leq x \leq 2 \pi$
- $-\cos (x-\pi)=\frac{\sqrt{3}}{2}, \quad-4 \pi \leq x \leq 0$

3. Using the Calculator

Solve the equation $3 \sin (x)-1=2$ using the inverse sine function on the calculator.

- What mode should you be in?
- What answer does the calculator give?
- How can you find more answers?

