CCSS Algebra 4 Tangent on the Unit Circle

Recall that in a right triangle, $tan(\theta) = \frac{opposite}{adjacent}$.

- 1. Explain why, if θ is a rotation on the unit circle, $tan(\theta) = \frac{sin(\theta)}{cos(\theta)}$. Be specific.
- 2. Use the unit circle to find:
 - a. *tan*(45°)
 - b. $tan(60^{\circ})$
 - C. $tan(\frac{3\pi}{4})$
 - d. *tan*(270°)
 - e. $tan(\frac{7\pi}{6})$
 - f. $tan(-45^{\circ})$
 - g. $tan(-120^{\circ})$
 - h. $tan(-\pi)$
- 3. Use the unit circle to solve each equation for θ :
 - **a**. $tan(\theta) = \sqrt{3}, \ 0 \le \theta \le 360$
 - b. $tan(\theta) = 0, -\pi \le \theta \le \pi$
 - **c.** $tan(\theta) = \infty, -360 \le \theta \le 0$
 - d. $tan(\theta) = 1$, $0 \le \theta \le 360$

- 4. Tangent and Linear Equations
 - a. What is the equation of the line that connects the origin to $(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2})$?
 - b. What is $tan(\pi/4)$?
 - c. How are the answers to (a) and (b) related?
 - d. What is the equation of the line that connects $(\frac{1}{2}, \frac{-\sqrt{3}}{2})$ to $(\frac{-1}{2}, \frac{\sqrt{3}}{2})$?
 - e. What is $tan(5\pi/3)$? What is $tan(2\pi/3)$?
 - f. How are the answers to (d) and (e) related?
 - g. Write notes about how tangent is related to a linear equation.
- 5. Segments Tangent to the Unit Circle: Recall that in a right triangle, $tan(\theta) = \frac{opposite}{adjacent}$
- a. Which trigonometric function gives the length of QR?
- b. Which trigonometric function gives the length of PR?
- c. What is the length of QP?
- d. What is the length of PT?
- e. Name two segments that are **opposite** to θ
- f. Name two segments that are **adjacent** to θ
- g. Thus, what is the length of ST?
- h. Write notes about what tangent tells you about the unit circle.

