1. Zero Exponents

- a. Since 2000, college tuition has been growing substantially. For example, the cost of tuition at the University of Oregon since 2000 can be represented by the function $t(x) = 3800 \cdot 1.26^{\frac{x}{4}}$, where x = years since 2000 and y = tuition for Oregon residents.
 - i. What does the $1.26^{\frac{x}{4}}$ in the equation tell you about the cost of tuition? Be specific and complete.
 - ii. Evaluate t(0). What does t(0) mean about the cost of tuition?
- b. For any exponential equation, $f(x) = a \cdot b^x$, explain why f(0) = a.
- c. Given part (b), it must be true that $a = a \cdot b^0$ for any exponential equation. Why does this mean that $b^0 = 1$ for any value b? Explain thoroughly.

2. **Negative Exponents**

- a. Mr. Slusher started college in 1984. Use the equation from 1a above to determine tuition in 1984 (recall that x = years since 2000) at the U of O.
- b. What exponent did you use in 2a to go back to 1984? What effect did a negative exponent have on the year 2000 tuition?
- c. Without using a calculator, predict what the value of $10 \cdot 2^{-1} =$ _____. Why do you think it will be that value?
- d. Recall that exponents are human inventions to provide a shortcut for repeated multiplication. For example, $10 \cdot 2^3 = 10 \cdot 2 \cdot 2 \cdot 2$ and $10 \cdot 2^2 = 10 \cdot 2 \cdot 2$ and $10 \cdot 2^1 = 10 \cdot 2$ and $10 \cdot 2^0 = 10$. Given this pattern, what do you think $10 \cdot 2^{-1} =$ _____? What about $10 \cdot 2^{-2} =$ _____?

e. Use this to explain why $y = 2^{-x}$ is equivalent to $y = (\frac{1}{2})^x$. (Or equivalent to $y = \frac{1}{2^x}$)

3. Fraction Exponents and Roots

- a. Use the equation from question 1 to determine the U of O tuition in 2001. In other words, evaluate $t(1) = 3800 \cdot 1.26^{\frac{1}{4}}$.
- b. In question 1ai, you should have made a statement equivalent to " $1.26^{\frac{4}{3}}$ means that tuition grew by 26% every 4 years." How could you use the answer to 3a to determine the <u>one-year</u> growth rate of tuition?
- c. What does it mean to raise a number to a fractional exponent. Consider the examples below:

$$9^{\frac{1}{2}} = (3 \cdot 3)^{\frac{1}{2}} = 3$$
 $16^{\frac{1}{4}} = (2 \cdot 2 \cdot 2 \cdot 2)^{\frac{1}{4}} = 2$ $125^{\frac{1}{3}} = (5 \cdot 5 \cdot 5)^{\frac{1}{3}} = 5$

d. A fractional exponent is equivalent to taking a root. For example, $a^{\frac{1}{2}} = \sqrt{a}$ and $b^{\frac{1}{3}} = \sqrt[3]{b}$. Given part c above, explain why this makes sense.