\qquad

1. Zero Exponents

a. Since 2000, college tuition has been growing substantially. For example, the cost of tuition at the University of Oregon since 2000 can be represented by the function $t(x)=3800 \cdot 1.26^{\frac{x}{4}}$, where $\mathrm{x}=$ years since 2000 and $y=$ tuition for Oregon residents.
i. What does the $1.26^{\frac{x}{4}}$ in the equation tell you about the cost of tuition? Be specific and complete.
ii. Evaluate $t(0)$. What does $t(0)$ mean about the cost of tuition?
b. For any exponential equation, $f(x)=a \cdot b^{x}$, explain why $f(0)=a$.
c. Given part (b), it must be true that $a=a \cdot b^{0}$ for any exponential equation. Why does this mean that $b^{0}=1$ for any value \mathbf{b} ? Explain thoroughly.

2. Negative Exponents

a. Mr. Slusher started college in 1984. Use the equation from 1a above to determine tuition in 1984 (recall that $x=$ years since 2000) at the U of O.
b. What exponent did you use in 2 a to go back to 1984 ? What effect did a negative exponent have on the year 2000 tuition?
c. Without using a calculator, predict what the value of $10 \cdot 2^{-1}=$ \qquad . Why do you think it will be that value?
d. Recall that exponents are human inventions to provide a shortcut for repeated multiplication. For example, $10 \cdot 2^{3}=10 \cdot 2 \cdot 2 \cdot 2$ and $10 \cdot 2^{2}=10 \cdot 2 \cdot 2$ and $10 \cdot 2^{1}=10 \cdot 2$ and $10 \cdot 2^{0}=10$. Given this pattern, what do you think $10 \cdot 2^{-1}=$ \qquad ? What about $10 \cdot 2^{-2}=$ \qquad ?
e. Use this to explain why $y=2^{-x}$ is equivalent to $y=\left(\frac{1}{2}\right)^{x}$. (Or equivalent to $y=\frac{1}{2^{x}}$)

3. Fraction Exponents and Roots

a. Use the equation from question 1 to determine the U of O tuition in 2001. In other words, evaluate $t(1)=3800 \cdot 1.26^{\frac{1}{4}}$.
b. In question 1ai, you should have made a statement equivalent to " 1.26^{4} means that tuition grew by 26% every 4 years." How could you use the answer to 3 a to determine the one-year growth rate of tuition?
c. What does it mean to raise a number to a fractional exponent. Consider the examples below:

$$
9^{\frac{1}{2}}=(3 \cdot 3)^{\frac{1}{2}}=3 \quad 16^{\frac{1}{4}}=(2 \cdot 2 \cdot 2 \cdot 2)^{\frac{1}{4}}=2 \quad 125^{\frac{1}{3}}=(5 \cdot 5 \cdot 5)^{\frac{1}{3}}=5
$$

So what does
$100^{\frac{1}{2}}=$ \qquad $8^{\frac{1}{3}}=\quad$?
d. A fractional exponent is equivalent to taking a root. For example, $a^{\frac{1}{2}}=\sqrt{a}$ and $b^{\frac{1}{3}}=\sqrt[3]{b}$. Given part c above, explain why this makes sense.

