\qquad

Curve Fitting

We have learned about a lot of different types of functions, each which produces a different curve as a graph (lines count as curves, too). Each situation will give you a few points that you need to connect with the given type of curve. They will start out easier and get more complicated as you go. Find the equation of the curve that matches each situation.

1. Linear
a. A line goes through the points $(2,-5)$ and $(4,4)$
b. You set up a savings account that automatically deposits money from your checking account every month. After 5 months you have $\$ 300$ in your account, and after 8 months you have $\$ 480$.
2. Quadratic
a. A parabola has a vertex of $(5,10)$ and passes through $(1,4)$
b. You kick a soccer ball and it lands on the ground 40 feet away from you. It reached a maximum height of 12 feet.
3. Absolute Value
a. An absolute value curve has a vertex of $(-2,-3)$ and passes through ($-4,-9$)
b. The Great Pyramid in Egypt is 455 feet tall and is 756 feet wide at the base. Model a cross-section of the Great Pyramid with an Absolute Value Curve.
4. Cubic
a. A cubic function has an inflection point of $(-1,1)$ and passes through $(1,9)$
b. A person's weight is roughly a cubic function of their height. I am 74 inches tall and weigh 210 pounds. My brother is 77 inches tall and weighs 236.59 pounds. Assume the curve also goes through the point $(0,0)$.
5. Rational
a. A rational function's asymptotes intersect at the point $(3,5)$. The curve passes through the point $(4,4)$.
b. The relationship between pressure and volume of a gas in a rigid container, held at constant temperature, can be modeled with a rational function. If the volume of a container of air is 100 ml , then the pressure is $.78 \mathrm{~kJ} / \mathrm{cm}^{2}$. If the volume is reduced to 50 ml , then the pressure increases to $1.56 \mathrm{~kJ} / \mathrm{cm}^{2}$. (Think about what the asymptotes MUST be!)
6. Exponential
a. An exponential function has an asymptote of $y=1$ and passes through the points $(0,5)$ and $(3,17)$
b. Mr. Maurer is growing bacteria for some insidious science experiment. There are 24 bacteria in a culture after 3 hours, and after 6 hours there are 192 bacteria.
7. Sine/Cosine
a. A trigonometric function has a maximum of $(1,5)$ and a minimum of $(3,1)$. Find as many functions as apply.
b. A car tire is approximately 24 inches in diameter. The car is traveling at such a speed that the tire makes 3 rotations every second.
8. Sine/Cosine
a. A trigonometric function has a midline of $y=-3$, an amplitude of 2 , and a period of 5 . Find as many functions as apply
b. On its shortest day, December 20th, Portland gets about 6 hours of sunlight. On its longest day, June 20th, Portland gets about 18 hours. Find as many functions as apply.
