Module #3:

Name

Date

Worksheet 14c: Solving Linear Systems of Equations: Addition (Elimination Method)

Elimination Method Using Multiplication:

Some systems of equations cannot be solved simply by adding or subtracting the equations. One or both equations must first be multiplied by a number before the system can be solved by elimination. Consider the following example:

Example 3:

Use elimination to solve the system of equations x + 10y = 3 and 4x + 5y = 5.

$$x + 10y = 3$$

 $4x + 5y = 5$
Multiply $x + 10y = 3$ by -4 .
Then add the two equations.

$$-4x - 40y = -12$$

$$4x + 5y = 5$$

$$-35y = -7$$

$$-35y = -7$$

$$-35 - 35 \qquad y = \frac{1}{7}$$

Substitute $\frac{1}{5}$ for y into either original equation. Then solve for y.

$$x + 10y = 3$$

 $x + 10(^{1}/_{5}) = 3$
 $x + 2 = 3$
 $x + 2 - 2 = 3 - 2$ $x = 1$

The solution of this system is $(1, \frac{1}{5})$

Use elimination to solve each system of equations:

Use elimination to solve each system of equations:
6.
$$3x + 2y = 0$$
 $3x + 2y = 0$ 7. $2x + 3y = 6$ $2x + 3y = 6$ 8. $3x - y = 2$ $3x - y = 2$ $3x - y = 2$ $3x - 4y = 3$ $3x + 6y = 9$ $2(x + 2y = 5)^2$ $2x + 4y = 10$ $3(x + 2y = 3)^3$ $3x + 6y = 9$ $2x + 13y = 5$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $2x + 13y = 6$ 8. $3x - y = 2$ $3x + 6y = 9$ $3x +$

(My 78) (2, -3)

$$(-3, 4)$$

$$9/(4x + 5y = 6) 6 24x + 30y = 36$$

$$4(6x - 7y = -20) 4 24x - 28y = -80$$

$$58y = 116$$

$$4 = 2$$

$$4 \times 1500 = 6$$
 $4 \times 10 = 6$
 4×-4

Copyright© 2000. All rights reserved.

10.4(4x + 2y = 8)4
$$16 \times 7 = 32$$

 $16x - y = 14$ $16 \times -9 = 14$
 $11x - 7 = 14$ $9x = 18$

Module #3:

Name

Date

Worksheet 14c: Solving Linear Systems of Equations: Addition

(Elimination Method)

View Tutorial 14a (covers worksheets 14a, b and c)

♣→Objective: Use the elimination method (addition & multiplication) in order to solve the system of equations.

Elimination Method Using Addition and Subtraction:

In systems of equations where the coefficient (the number in front of the variable) of the x or y terms are additive inverses, solve the system by adding the equations. Because one of the variables is eliminated, this method is called elimination.

Example 2:

Use elimination to solve the system of equations

$$x - 3y = 7$$
 and $3x + 3y = 9$.

Add the two equations.

$$x - 3y = 7$$

$$+ 3x + 3y = 9$$

$$4x = 16$$

$$4x = 16$$

$$\begin{array}{c} 4 & 4 \\ x - 3y = 7 \\ 4 & 3 \end{array}$$

x = 4

Substitute 4 for x in either original equation. Then solve for y.

$$4 - 3y = 7$$
$$- 3y = 3$$

y = -1

Use elimination to solve each system of equations:

The solution of this system is (4, -1).

1. 2x + 2y = -2 2(7) + 2y = -2 4x - 2y = -1 4x - 2(4.5) = 3 x - y = 2 -1/2 - 9 = 2 3x - 2y = 12 4 + 2y = -2 -4x + 4y = -2 4x + 3 = -1 x + y = -3 -y = 2/2 5x = 10 4x = -1 2y = -3 4x = -1 4x = -1

4. 6x + 5y = 4

5. 2x-3y=12 4x+3y=24 2(6)-3y=12 $6 \times = 36$ 12-3y=12 -3y=0 y=0

(-1, 2)

(6,0)