Sequences and Exponential Review Packet

Name: KEY

1. a. You are trying to grow a large enough army of bacteria to take over the world. You start with 250 bacteria, and the population increases by 25% every day. Write an equation to model this $y = 250(1.25)^{x}$ y = 6000 y = 6000situation. Define your variables.

b. Sketch a graph of the situation.

d. How long until you have your army of 10,000,000 bacteria?

 $47.5 \approx 48 \, \text{days}$ 2. a. You are trying to determine the age of an ancient artifact. You know that carbon-14 has a half-life of around 1570 years. Your artifact started with 1000 mg of carbon-14. Let x = # of y=1000(.5)x half-lifes.

b. Sketch a graph of the situation.

c. Create a table for the situation

d.lf your artifact now has 62.5 mg of carbon-14, how old is it?

Uhalflifes, or 4.1570 €

3. a. You are looking at two	= -	• •	•	-
The first plan pays 7% ann			, · · · · · · · · · · · · · · · · · · ·	-
interest, compounded annu	ıally. Make a table	for each plan if you	≀start with \$500	
entries in your table.	71 - 5 GCY	1+ 07)	\times	=years =money
1st Plano	1-500	1 12/	1	=maneu
	/	X	· .	
2nd Plan. y	= 500($1 + \frac{07}{12}$ $1 + 07$	_	
1 / Maro		. c L 01		and plan
		1st Plan		2 parc
b. Write an exponential mo	del for each plan.	\times \times		$\times \mid v$
M	p	0 1500		0 500
		0 500	1 <i>)</i>	1 536
		1 536,14		
		2 1574.9	10	2 574,5
_c, Which plan would you ch	oose? Why?	3 616,4	6	3 615,96
The first It is	= hisher			4- 660,31
The first It is at each. Fine.	, , , , , , , , , , , , , , , , , , , ,	4 1661.0		()
4. a. You are looking at two	savings plans and	• •	•	•
The first plan pays 5% annu interest, compounded daily.	•	•	•	•
antrina in vary table	1 -1	each plait ii you stai	7 rd 01	a de la least o
131	flon		21/1	
X=years ×	19		1500	
y=money 0	1500		0 500	37
	552.24		2 577	7 43
2	580.38		3 620.	EU
3 l	609.94		9 666.	86
1. IA /! i			7 1000.	00
15t° 11-5	00 (1+	, 05) 7 ^		
b. Write an exponential mod	00 (11	4.1		·
2 nd. y=5	00/1+.	072)365 X	,	
		う ⁰ 3/		
c. Which plan would you ch	•	,	ı //	• .
I and	10 11 1	C 102222	^ <i>\f</i>	

Simplify the following expressions so they only contain positive exponents.

$$\frac{15x^{4}y^{5}z^{3}}{5x^{2}y^{-3}z^{3}} = \frac{3 \times \sqrt{-25 - (-3)}}{5x^{2}y^{-3}z^{3}} = \frac{3 \times \sqrt{-25 - (-3)}}{5x^{2}y^{-3}z^{3}} = \frac{3 \times \sqrt{-25 - (-3)}}{3 \times 2y^{8}} = \frac{3 \times \sqrt{-25 - (-3)}}{3 \times 2y$$

6. Explain why the following equations make sense, using the definition of an exponent

a.
$$x^3x^6x^8=x^{17}$$
 Repeated multiplication

$$\frac{x}{x^3}=x^4$$

$$c. (2x^{3})^{3} = 8x^{9}$$

$$(7x^{3})^{3} = (2x^{3})(7x^{3})(2x^{3}) = 2 \cdot 2 \cdot 2 \cdot x^{3} \cdot x^{3} \cdot x^{3}$$

$$= 8 \cdot (x \cdot x \cdot x)(x \cdot x) = 8 \cdot x^{9}$$

$$1$$

$$\frac{1}{x} = x^{-6}$$

Dividing is the opposite of multiplying, positives are aposiles Because positive exponents mean multiply, regatives mean the apposite divide.

7. Let
$$f(x) = \frac{2+3x}{x-1}$$
, and $g(x) = \frac{2+x}{x-3}$

a. Find f(g(x))
$$\frac{z-1}{g(x)-1} = \frac{z+3}{z+x} \frac{(z+x)}{(x-3)} \frac{(z+x)}{(x-3)}$$

b. Find g(f(x))
$$\frac{2(x-3)+3(z+x)}{z+x-1(x-3)} = \frac{zx-6+6+3x}{z+x-x+5} = \frac{5x}{5} = \chi.$$

$$\frac{2+f(x)}{f(x)-3} = \frac{2+\frac{2+3x}{x-1}}{\frac{2+3x}{x-1}} = \frac{2(x-1)+2+3x}{2+3x-3(x-1)} = \frac{2x-2+2+3x}{2+3x-3x+3}$$
Are f and g inverses?
$$= \frac{5x}{x-1} = \frac{5x}{x-1} =$$

c. Are f and g inverses?

8. Let
$$f(x) = \frac{3+2x}{x+1}$$
 and $g(x) = \frac{x+1}{3+2x}$

8. Let
$$f(x) = \frac{1}{x+1}$$
, and $g(x) = \frac{1}{3+2x}$
a. Find $f(g(x)) = \frac{3+2g(x)}{g(x)+1} = \frac{3+2(\frac{x+1}{3+2x})}{\frac{x+1}{3+2x}+1} = \frac{3(3+2x)+2(x+1)}{\frac{x+1}{3+2x}+1} = \frac{3(3+$

$$= \frac{9+6x+2x+2}{x+1+3+2x} = 111+8x = 4+3x$$

b. Find g(f(x))

c. Are f and g inverses?

9. Let
$$f(x) = 3 + 4x$$
, and $g(x) = 3x - 4$

a. Find f(g(x))

$$3+4g(x)=3+4(3x-4)=3+12x-16$$

 $= 3+12x-16$

b. Find g(f(x))

$$3f(x)-4=3(3+4x)-4=9+12x-4=[7x-5]$$

c. Are f and g inverses?

8. Complete the table to match the first 4 terms of the sequence with its explicit and recursive formulae.

Sequence	Explicit	Recursive
-4, -1, 2, 5	S(x) = -4+3(x-1)	P(x+1)=F(x)+3, F(1)=-1
27,9,3,1	$f(x) = 27 (\frac{1}{3})^{x-1}$	f(xH)=f(x)(/3); f(1)=27
3,6,12,24	P(x)=3(2)x-1	f(x+1) = 2f(x); $f(1) = 3$
0,2,8,18	$f(x) = 2(x-1)^2$	f(x11)=f(x)+4x-2, f(1)=
2, 4, 8, 16	f(x)=2.2×-0R2*	f(x+1)= f(x).2; f(1)=2
-5,-2,1,4	f(x) = -5 + 3(x-1)	F(x+1)=F(x1+3) f(1)=-
-2,1,4,7	f(x)=-2+3(x-1)	f(x+1) = f(x) + 3; $f(1) = -2$
24, 8, 8/3	F(x)=24/1/3)x-1	f(x+1)=f(x).z,f(1)=Z4

9. Mr. Maurer finds two terms from a sequence, and all he knows is that the sequence is geometric. The two terms are 1 and 729. Continue the sequence in each situation.

10. A piece of toilet paper is .15 mm thick. The milky way is approximately 9.46×10^{20} m across. . 15mm= . 15 = 1000 m= ,000 15m X=#offolds milky way? ,00015 U= thickness 10003 ,0006 ,0012 11. What does it mean for an exponent to be a fraction? Use an example in your explanation. Intege eponents tell you to multiply 4=402 y=16.2x