Last class we learned about function notation as a way to communicate which equation or line we are talking about. Remember that we named Ian Maurer's equation I(x) (pronounced "I of x "), Ellen Maiden's equations $E(x)$ (pronounced " E of x ") and Chelsea Muhs' equation as $C(x)$ (pronounced \qquad).

We can use function notation to solve problems. For example, if you have a function $f(x)=2 x+3$, and you want to know what $f(x)$ is equal to when x equals 5 , you write it like this \rightarrow Find $f(5)$:

If you know a certain y-value and want to find the corresponding x-value, you can also use function notation. Let's say you want to know what x is when $\mathrm{y}=45$, you write like this $\rightarrow \quad$ Solve $f(x)=45$:

Let's apply these skills to solve problems about "The Big Race":

During Heat 2, Chelsea Muhs' run could be modeled with the equation $C(x)=5 x-10$, because she could run 5 yards per second, and she started 10 yards behind the starting line. Remember, \mathbf{x} represents the time in seconds, and $\mathbf{C}(\mathbf{x})$, or \mathbf{y}, represents the distance in yards.

1. What was her distance after 20 seconds of running?
2. Find $C(23)$.
3. Find $C(40)$.
4. What does the result mean of \#3?
5. How many seconds will it take her to run 95 meters?
6. Solve $C(x)=25$
7. What does the result mean of \#6?

Unit 4- Point Slope \& Standard Form

Use these two functions for the following problems:

$$
f(x)=12 x+1 \text { and } g(x)=-4 x+8
$$

8. Find $f(4)$.

9. Find $f(-3)$.
10. Find $g(4)$.
11. Find $g(-3)$.
12. Solve $f(x)=25$
13. Solve $g(x)=-36$
14. Solve $g(x)=10$
15. Solve $f(x)=10$
