\qquad

Functions, Inverses, and Tables

Part 1: Fun with Functions!

Remember the definition of a function: A relation where each INPUT has exactly one OUTPUT.

1. Three of the following tables are functions. Identify which are functions.

x	0	1	2	3	4	5
y	9	8	7	6	5	4

x	0	1	2	3	4	5
y	9	9	9	9	9	9

x	9	9	9	9	9	9
y	5	6	7	8	3	43

x	0	1	2	2	1	0
y	0	1	4	4	1	0

x	0	1	2	2	1	0
y	0	1	4	-4	-1	0

2. How can you identify if a table is a function?
3. Find the equation for at least one of the tables.
4. Choose one of the tables and create a table for its inverse.

Part 2: Investigating Inverses

Remember the definition of an inverse: a relation where the INPUT and OUTPUT are switched.
Consider the following table. The functions $f(x)$ and $g(x)$ are inverses.

x	0	3	6	9	12
$f(x)$	6	9	3	11	0
$g(x)$	12	6	0	3	55

1. Explain why the functions are inverses.
2. One of the following tables represents inverse functions. Identify which one and explain how you know.

Table 1			Table 2		
X	$\mathrm{h}(\mathrm{x})$	k(x)	x	$\mathrm{p}(\mathrm{x})$	$\mathrm{q}(\mathrm{x})$
0	1	-1	0	1	-1
1	2	0	1	2	0
2	9	1	2	9	9
9	730	2	9	2	730
4	65	1.4422	4	65	1.4422

3. Complete the following table so that $s(x)$ and $t(x)$ are inverses.

x	0	3		5	7
$s(x)$	3		0	7	
$t(x)$				9	

4. Make a table that represents a function, but whose inverse is NOT a function. Explain why your table meets BOTH conditions
