HW: Function Notation

Function notation is a useful way in mathematics to identify different equations. We use it as a formal way to show whether to EVALUATE (find the value) of a function, or SOLVE (for a variable).

Part 1:Use the following functions to answer the problems below:

$f(x) = 2x - 3 \qquad g(x)$	$m(x) = \frac{-12}{x} \qquad m(x) = x^2$	d(x) = 2(x - 3)
Here we will practice EVALUATING Example 1: Find $f(-3)$.		2: Find <i>d</i> (6).
f(-3) = 2(-3) - 3 f(-3) = -6 - 3 f(-3) = -9	d(6) = 2(6 + d(6)) = 2(3) d(6) = 6	·
You Try: 1. Find <i>f</i> (5).	2. Find $g(-2)$.	3. Find <i>d</i> (-5).
4. Find <i>m</i> (5).	5. Find $m(-5)$.	6. Find g(6).
7. Find $f(-4)$.	8. Find <i>d</i> (11).	9. Find <i>m</i> (−11).

Part 2: Now, we will practice SOLVING using the following functions to answer the problems below:

f(x) = 2x - 3	$g(x) = \frac{-12}{x}$	d(x) = 2(x - 3)
Example 1: Solve $f(x) = -11$		Example 2: Solve $g(x) = 6$.
2x - 3 = -11		$\frac{-12}{x} = 6$
2x = -8 $x = -4$		-12 = 6x $-2 = x$
You Try: 1. Solve $d(x) = -18$	2. Solve	e f(x) = 15.

3. Solve g(x) = 3. 4. Solve d(x) = -22.

Name

Part 3: More Challenging Mixed Practice:

5. If
$$m(x) = x^2$$
, solve $m(x) = 144$
6. If $h(x) = x^2 - 5x + 3$, find $h(-7)$.

7. If
$$p(x) = \frac{2x-5}{3}$$
, find $p(18)$.
8. If $p(x) = \frac{2x-5}{3}$, solve $p(x) = -5$

Part 4: Finding & Checking Inverses:

$$f(x) = 2x - 3 \qquad \qquad g(x) = \frac{-3x+2}{5} \qquad \qquad h(x) = -3 + 2(x+1)^3 \qquad \qquad k(x) = 3\sqrt{x+4} - 2$$

To find an inverse, you set the function equal to "y" and solve for "x" using SADMEP. Swap the "x" and "y" of the final result to write the inverse as a function. To check if two functions are inverses, look at a table of values to see that the domain and range are switched¹.

Example: Find the inverse of f(x), i.e. find $f^{-1}(x)$

y = 2x - 3					
y + 3 = 2x	x	0	-3	1.5	-9
y = 2x - 3 y + 3 = 2x $\frac{y+3}{2} = x$ $f^{-1}(x) = \frac{x+3}{2}$	f(x)	-3	-9	0	-21
	$f^{-1}(x)$	1.5	0	2.25	-3

Explain how the table supports the fact that the two functions are inverses

Practice:

1. Find $g^{-1}(x)$ and check with a table

2. Find $h^{-1}(x)$ and check with a table

3. Find $k^{-1}(x)$ and check with a table

¹ Later this unit we will use **composition of functions** to check more formally if two functions are inverses. If this worksheet is going easily for you, please ask Maurer about **function composition**.