$\qquad$
HW: Function Notation
Function notation is a useful way in mathematics to identify different equations. We use it as a formal way to show whether to EVALUATE (find the value) of a function, or SOLVE (for a variable).

Part 1:Use the following functions to answer the problems below:

$$
f(x)=2 x-3 \quad g(x)=\frac{-12}{x} \quad m(x)=x^{2} \quad d(x)=2(x-3)
$$

Here we will practice EVALUATING.

Example 1: Find $f(-3)$.
$f(-3)=2(-3)-3$
$f(-3)=-6-3$
$f(-3)=-9$

Example 2: Find $d(6)$.

$$
\begin{aligned}
& d(6)=2(6-3) \\
& d(6)=2(3) \\
& d(6)=6
\end{aligned}
$$

## You Try:

1. Find $f(5)$.
2. Find $g(-2)$.
3. Find $d(-5)$.
4. Find $m(5)$.
5. Find $m(-5)$.
6. Find $g(6)$.
7. Find $f(-4)$.
8. Find $d(11)$.
9. Find $m(-11)$.

Part 2: Now, we will practice SOLVING using the following functions to answer the problems below:

$$
f(x)=2 x-3 \quad g(x)=\frac{-12}{x} \quad d(x)=2(x-3)
$$

Example 1: Solve $f(x)=-11$
Example 2: Solve $g(x)=6$.
$2 x-3=-11$
$\frac{-12}{x}=6$
$2 x=-8$
$x=-4$
$-12=6 x$
$-2=x$

You Try:

1. Solve $d(x)=-18 \quad$ 2. Solve $f(x)=15$.
2. Solve $g(x)=3$. 4. Solve $d(x)=-22$.
3. If $m(x)=x^{2}$, solve $m(x)=144$
4. If $p(x)=\frac{2 x-5}{3}$, find $p(18)$.
5. If $p(x)=\frac{2 x-5}{3}$, solve $p(x)=-5$.

## Part 4: Finding \& Checking Inverses:

| $f(x)=2 x-3$ | $g(x)=\frac{-3 x+2}{5}$ | $h(x)=-3+2(x+1)^{3}$ | $k(x)=3 \sqrt{x+4}-2$ |
| :--- | :--- | :--- | :--- |

To find an inverse, you set the function equal to " $y$ " and solve for " $x$ " using SADMEP. Swap the " $x$ " and " $y$ " of the final result to write the inverse as a function. To check if two functions are inverses, look at a table of values to see that the domain and range are switched ${ }^{1}$.

Example: Find the inverse of $\mathrm{f}(\mathrm{x})$, i.e. find $f^{-1}(x)$

| $y=2 x-3$ <br> $y+3=2 x$ <br> $\frac{y+3}{2}=x$ <br> $f^{-1}(x)=\frac{x+3}{2}$ | $\|$ | $f(x)$ | -3 | -9 | 1.5 |
| :--- | :--- | :--- | :--- | :--- | :--- |

Explain how the table supports the fact that the two functions are inverses

## Practice:

1. Find $g^{-1}(x)$ and check with a table
2. Find $h^{-1}(x)$ and check with a table
3. Find $k^{-1}(x)$ and check with a table
[^0]
[^0]:    ${ }^{1}$ Later this unit we will use composition of functions to check more formally if two functions are inverses. If this worksheet is going easily for you, please ask Maurer about function composition.

