Part 1: Number Line (one variable)

1. Write down three value of x that are represented by the inequality:
a. $x>4$
b. $x \leq 2$
c. $1<x \leq 3$
2. Describe the differences between the set of numbers represented by the inequality $1<x<3$ and the inequality $1 \leq x \leq 3$. How do you show those differences on a number line?
3. Describe the differences between the set of numbers represented by the inequality $1 \leq x \leq 3$ and the inequalities $x \geq 1, x \leq 3$.
4. Describe the differences between the set of numbers represented by the inequality $1 \leq x \leq 3$ and the inequalities $x<1, x>3$. How do you show those differences on a number line?

Part 2: Coordinate Plane (two variable)

5. Write down three solutions, in the form (x, y), to the equation $y=2 x+1$.
6. Are these coordinate points also solutions to the inequality $y>2 x+1$? Explain why or why not.
7. Are the solutions from Question \#6 solutions to the inequality $y \geq 2 x+1$? Explain why or why not.
8. Describe the differences between the set of solutions to the inequality $y>2 x+1$ and the inequality $y \geq 2 x+1$. How do you show those differences on a graph?
9. Describe the differences between the set solutions to the inequality $y \geq 2 x+1$ and the inequality $y<2 x+1$. How do you show those differences on a graph?
10. Describe the differences between the set of solutions to the inequality $y \geq 2 x+1$ and the inequality $2 x+1 \leq y \leq 2 x+3$. How do you show those differences on a graph?

Part 3: Extension

11. Consider the inequality $x^{2}<9$. How could you represent this inequality using x rather than x^{2}. In other words, how could you write an inequality similar to the ones shown in Part 1 that would represent the same solutions as $x^{2}<9$?
12. Consider the inequality $(x-1)(x-4) \geq 0$. How could you write an inequality similar to the ones shown in Part 1 that would represent the same solutions as $(x-1)(x-4) \geq 0$?.
13. Describe the differences between the solutions to the inequality $y>x^{2}$ and the inequality $y \leq x^{2}$. How do you show those differences on a graph?
