In the mid 1500s, an Italian mathematician named Gerolamo Cardano posed a simple sounding algebraic problem:

Find two numbers that add to 10 and multiply to 40 .

This simple premise lead to the invention of a new set of numbers that have turned out to be interesting and useful in the development of deeper mathematical thought.

1. Let x and y be the numbers in Cardano's problem. Write two equations to represent the problem that he posed.
2. Solve this system of equations to find values of x and y. Is there a problem with the solutions you found? Explain why or why not.
3. Definitions:

- Imaginary Unit: $i=\sqrt{-1}$
- Complex Number: any number that can be expressed using the Imaginary Unit. For example, $5+2 i,-3 i, 5-\sqrt{15} i$.
- Real Part of a Complex Number: the value of a complex number that does not include i.
- Imaginary Part of a Complex Number: the value of a complex number that doe include i.
a. Use the Quadratic Formula to solve the equation $x^{2}+x+1=0$. Determine the Real and Imaginary parts of each solution.
b. Use the Quadratic Formula to solve the equation $6 x^{2}-6 x+2=0$. Determine the Real and Imaginary parts of each solution.
c. A quadratic function has complex roots $x=2-i$ and $x=2+i$. Write the function in Standard Form.
d. The polynomial function $p(x)=x^{3}+4 x^{2}+11 x+8$ has a zero at $x=-1$. Find the two complex roots of $p(x)$.

4. Notes to Self:

- How can you use the Quadratic Formula to determine whether or not a quadratic function has complex roots?
- How can you use the Complex Roots of a parabola to write the function in Standard Form?
- If an $n^{\text {th }}$ degree polynomial has 2 real roots, how many complex roots must it have? If it has 3 real roots, how many complex roots must it have?

5. Extra Practice:
a. Find all the roots (real and complex) of each polynomial:
i. $\quad f(x)=x^{2}+x+11$
ii. $g(x)=\left(x^{2}-4\right)\left(x^{2}+x+2\right)$
iii. $h(x)=\left(x^{2}-2 x-8\right)\left(x^{2}+9\right)$
b. Solve each equation below (find real and complex solutions):
i. $\quad-5 x^{2}=3 x+10$
ii. $\quad\left(x^{2}+3 x+5\right)(x-4)^{2}(2 x+1)=0$
iii. $\left(x^{2}+25\right)\left(x^{2}-1\right)\left(x^{2}+9\right)=0$
6. Review (Rational Expressions): Simplify each expression below:
a. $\quad \frac{3 x}{x+1}+\frac{3}{x+1}$
b. $\frac{x^{2}}{x+3}-\frac{9}{x+3}$
c. $\frac{1}{x-1}+\frac{1}{x+1}$
d. $\quad \frac{x}{x-3} \cdot \frac{(x-3)(x+3)}{x^{2}}$
e. $\frac{\left(x^{2}-25\right)\left(x^{2}+6 x+5\right)(x-1)}{\left(x^{2}+10 x+25\right)\left(x^{2}-1\right)}$
