Multiple Representations of Exponential Functions

Exponential functions can be represented in many ways: as equations, as tables, as graphs, or as word problems. Each representation describes the same pattern. Practice converting between the multiple representations of each exponential function.

Given a Table, Create an Equation and Word Problem to match.

1.

х	0	1	2	3
у	10	20	40	80

- a. Write the equation
- b. Write a word problem

2.

х	2	3	4	5
у	9	27	81	243

- a. How did you find the initial value?
- b. Write the equation
- c. Write a word problem

3.

х	3	6	9	12
у	200	100	50	25

- a. How did you find the growth rate?
- b. Write the equation
- c. Write a word problem

Given a Graph, find the Equation

1.

- a. Equation:
- b. This graph was translated vertically by 5 to create t(x). Write the transformed function, t(x).

2.

- a. Equation:
- b. How did the horizontal asymptote show up in your equation?
- c. This graph was reflected over the x axis, then shifted left 4 units to create s(x). Write the transformed function, s(x).

3.

- a. Equation:
- b. What part of the equation makes the graph point down?
- c. This graph was reflected over the y axis, then shifted up 2 units to create r(x). Write the transformed function, r(x).

