Polynomial Review Packet

Name:

1. Sketch a graph of each polynomial. Label at least one (x, y) point that is not a root.
a. $f(x)=-0.2(x-5)^{2}(x+5)^{2}$
b. $g(x)=\frac{1}{125}(x+1)(x+3)^{2}(x+5)^{3}$

c. $h(x)=\frac{1}{32}(x-2)^{3}(x+4)^{2}$

d. $p(x)=\frac{-1}{45}(x+9)(x+5)(x-1)^{2}$

2. Find the exact equation of each polynomial, given a graph.
a.

C.

b.

d.

3. Find the exact equation of each polynomial, given a verbal description.
a. Cubic function, real root of 7 , complex roots of $1+\mathrm{i}, 1-\mathrm{i}$.
b. Quartic function, complex roots of $3+\mathrm{i}, 3-\mathrm{i},-2+\mathrm{i},-2-\mathrm{i}$
c. Quintic function (5th degree), real roots of $1,2,3$, complex roots of $5+\mathrm{i}$ and its conjugate.
4. Completely factor the polynomial $p(x)=x^{4}-2 x^{3}-4 x^{2}-8 x-32$, given that two of the roots are 4 and -2
5. Divide the polynomials
a. $\frac{x^{4}+4 x^{3}-5 x^{2}-36 x-36}{x+7}$
b. $\frac{x^{3}-9 x^{2}+24 x-20}{x+9}$
6. Mr. Maurer claims that one of the 3 rd roots of 8 is $z=-1+\sqrt{3} i$
a. Find $|z|$.
b. Show by direct computation that $z^{3}=8$
c. Make a geometric argument that $z^{3}=8$, and list the other two 3rd roots of 8. (Hint: We did roots of unity in class, which are on a circle of radius 1 . What radius makes sense for $z^{3}=8$?)
7. You can also use a similar geometric argument to find roots of other complex numbers.
a. Find the four 4 th roots of -1 .
b. Show by direct computation that $z^{4}=-1$ for one of your complex roots.
c. Find the three 3 rd roots of $\frac{-\sqrt{2}}{2}+\frac{\sqrt{2}}{2} \mathrm{i}$
d. Show by direct computation that $z^{3}=\frac{-\sqrt{2}}{2}+\frac{\sqrt{2}}{2}$ i for one of your complex roots.
8. The function $f(x)=-1 x^{2}-16$ does not seem to have any roots. Sketch 3 different view of $f(x)$ to show where the roots are. Make sure to label your axes and any important points.
9.The function $p(x)=x^{4}-81$ has two real roots. The Fundamental Theorem of Algebra states that any polynomial of degree n must have exactly n roots. Sketch 3 different views of $p(x)$ to show where all n roots are. Label your axes and any important points.
9. a. Is it possible for a 4th degree polynomial to have 1 real root? Explain.
b. Is it possible for a 4th degree polynomial to have 2 real roots? Explain.
c. Is it possible for a 4th degree polynomial to have 0 real roots? Explain.
10. The roots of the polynomial $f(x)$ are in an arithmetic sequence where $a_{1}=-2, d=4, n=3$. Use the fact that $f(0)=12$ to find the exact equation of $f(x)$.
11. The roots of the polynomial $g(x)$ are in a geometric sequence where $a_{1}=24, m=0.5, n=4$. Use the fact that $f(0)=1$ to find the exact equation of $f(x)$.
12. a. Completely factor $p(x)=x^{5}-12 x^{4}+25 x^{3}+50 x^{2}+84 x+392$. Use the Integral Roots Theorem and polynomial division.
b. Sketch a graph of $p(x)$
13. a. Completely factor $q(x)=2 x^{4}+2 x^{3}+14 x^{2}+18 x-36$. Use the Integral Roots Theorem and polynomial division.
b. Sketch a graph of $q(x)$
