\qquad

1. Factor the polynomial $f(x)=x^{2}+8 x-20$ and use the factors to find the x-intercepts of the function.
2. Explain why you can't factor $g(x)=x^{2}+8 x-1$. How could you solve the equation $x^{2}+8 x-1=0$?
3. The Quadratic Formula ($a x^{2}+b x+c=0, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$) is a shortcut for a long process of solving Quadratic Equations that CANNOT BE FACTORED (full mathematics of the shortcut). To use the shortcut, you follow three steps:

- Make the equation to be solved in the form $a x^{2}+b x+c=0-$ - it is essential to have the equation $=0$.
- Identify the values of a, b and c from the equation (these are the coefficients on the x^{2} term, the x term and the constant coefficient.
- Use a calculator to evaluate $x=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}$ and $x=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}$ to determine the solutions.

Use the Quadratic Formula to solve each equation below:
a. $2 x^{2}+3 x-7=0$
b. $x^{2}-4 x-2=0$
c. $x^{2}=3 x-19$
4. All of the above examples, have 2 solutions. Is it possible for a Quadratic Equation to have only 1 solution? Explain why or why not. How could using the Quadratic Formula give you only one solution?
5. The equation $x^{2}+6 x+c=0$ has only one solution. What must be true about c ? How do you know?
6. Show that $4 x^{2}+4 x=-1$ has only one solution.
7. Is it possible that a Quadratic Equation has zero real solutions? Explain why or why not. How could using the Quadratic Formula give you no real solutions?
8. The equation $x^{2}+6 x+c=0$ has no real solutions. What must be true about c ? Be specific.
9. For each Quadratic Equation below, determine whether the equation has 2 real solutions, 1 real solution or no real solutions?
a. $x^{2}=7 x-2$
b. $-10 x^{2}+60 x-90=0$
c. $\quad 0.25 x^{2}=3.11 x-18.2$
10. Show that the quadratic function $f(x)=x^{2}+1$ has NO REAL ROOTS.

