\qquad

Projectile Project

Most objects fly through the air in the shape of a parabola. This is called "projectile motion."
Your Task: With a partner or by yourself, film a short video of projectile motion and use mathematics to ANALYZE your video in a graph and write-up.

Your project will include equations, a graph, and a write-up, in addition to your video, all completed and turned in through a Google Doc template provided on Google Classroom.

Project Description:

Record a video showing the object ascending and descending.

- Don't just drop the object
- Don't throw it straight down

D Don't use something that has significant air resistance or is lighter than air. For example, don't use balloons, feathers, frisbees, mist, etc.

\square Equations:

- Write an equation that approximately describes the parabola. I WILL check your work.
- Write your equation in 3 different forms:
- 1. Vertex form
- 2. Factored form
- 3. Standard form
- Show your work on how you figure out all the equations (you can either type up each step or write it out neatly and take a picture and insert into document).
\square Round any decimals to the nearest tenth (0.1), if necessary.

G Graph:

- Graph your equation:
- The graph should match with the equations AND should match the video. All 3 versions (graph, video, equations) should be approximately equivalent.
Label the x-intercepts, vertex, and y-intercept of the graph
- Title your graph
- Label the scale on both axes.

Write-up (in paragraph form):
Briefly explain what your projectile was and how you filmed it.

- Define your variables (what the values of x and y are that make sense for your video).
- Suggestion... x is either TIME (seconds) or is HORIZONTAL DISTANCE (feet or meters)

I In the context of the problem, explain what each of the following points on your graph represents:

- Vertex
- x-intercepts
- y-intercepts

Rubric

4 (HP)	- All requirements are complete and accurate. - Thorough and thoughtful write-up - Appropriate mathematical language is used throughout the project - Turned in on-time
3 (P)	
2.5 (CP)	- One correct equation - Might have minor errors - Graph might have minor errors and/or not all labeled. - Mathematical language is inaccurate - Write-up is partially complete
2 (DP)	
1 (NE)	Little or no evidence of understanding

Due Date:

