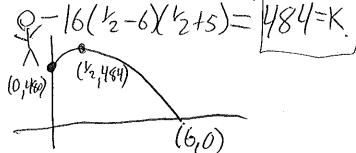
Name:		
Date: _	Period:	

Quadratic Formula Word Problems

- 1. Jason jumped off of a cliff into the ocean in Acapulco while vacationing with some friends. His height as a function of time could be modeled by the function $h(t) = -16t^2 + 16t + 480$, where t is the time in seconds and h is the height in feet.
 - a. How long did it take for Jason to reach his maximum height?

$$V_2$$
 a second $zeros$, $t=6$, $t=6$


b. What was the highest point that Jason reached?

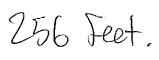
hed?
$$h = \frac{6+-5}{2} = \frac{1}{2}$$

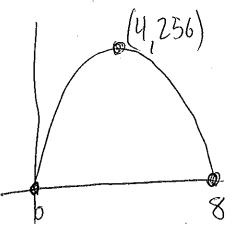
c. Jason hit the water after how many seconds?

484 4

- 2. If a toy rocket is launched vertically upward from ground level with an initial velocity of 128 feet per second, then its height h after t seconds is given by the equation $h(t) = -16t^2 + 128t$ (if air resistance is neglected). -16(+2-8t)
 - a. How long will it take for the rocket to return to the ground?

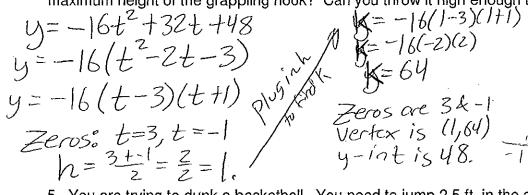
$$\frac{1}{100}$$
? $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$ $\frac{1}{100}$


8 Seconds Zeros:
$$t=0$$
, $t=8$
 $h=0+8=1$


After how many seconds will the rocket be 112 feet above the ground?
$$\frac{h = 0+8}{2} = 4$$
$$-[6(4)(4-8) = 256=K$$

- c. How long will it take the rocket to hit its maximum height?

d. What is the maximum height?



A rocket is launched from atop a 101 – foot cliff with an initial velocity of 116 ft/s.

- a. Substitute the values into the vertical motion formula $h(t) = -16t^2 + vt + h_0$. Let h(t) = 0
- b. Use the quadratic formula to find out how long the rocket will take to hit the ground after it is launched. Round to the nearest tenth of a second.

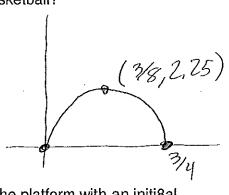
4. You and a friend are hiking in the mountains. You want to climb to a ledge that is 20 ft, above you. The height of the grappling hook you throw is given by the function $h(t) = -16t^2 + 32t + 100$ What is the maximum height of the grappling hook? Can you throw it high enough to reach the ledge?

K=-16(1-3)(1+1)

Started at 48, Mex is 64 64-48=16 Willout each ieda

5. You are trying to dunk a basketball. You need to jump 2.5 ft. in the air to dunk the ball. The height that your feet are above the ground is given by the function $h(t) = -16t^2 + 12t$. What is the maximum height your feet will be above the ground? Will you be able to dunk the basketball?

$$y = -16t^{2} + 12t$$


$$y = -16(t^{2} - \frac{3}{4}t)$$

$$y = -16(t)(t - \frac{3}{4}t)$$

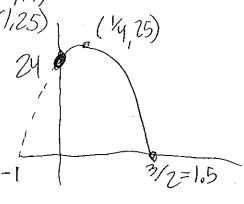
$$y = -16(t)(t - \frac{3}{4}t)$$

$$x = 0 + \frac{3}{4}t$$

Aled to jump 2.5, only jumped 7.25.

6. A diver is standing on a platform 24 ft. above the pool. He jumps form the platform with an initi8al upward velocity of 8 ft/s. Use the formula $h(t) = -16t^2 + vt + s$, where h is his height above the water, t is the time, v is his starting upward velocity, and s is his starting height. How long will it take for him to hit the water?

$$y = -16t^{2} + 8t + 24$$


$$y = -8(2t^{2} - t - 3)$$

$$y = -8(2t - 3)(t + 1)$$

$$z = -3(2t - 3)(t + 1)$$

$$h = \frac{3}{2} + \frac{1}{2} = \frac{1}{2} = \frac{1}{4}$$

K = -8(2(4)-3)(4+1) -8(-2.5)(1,25)K = 25Zeros ore 3/2/2-1 Vertex is (1/4,25) 4-10t is 24

