\qquad

1. a. What is the measure of a central angle that represents a full rotation?
b. If the Central Angle is 60°, what fraction of the circle is represented?
c. If the Central Angle is 225°, what fraction of the circle is represented?
d. Describe how the central angle can be used to represent a fraction of a circle.
2. Return to Anna's Ferris wheel. To set the mechanics of the wheel up correctly, Anna will need to know the distance that riders travel as they move around the Ferris wheel. Recall that the model Anna built had a radius of 1 meter. What is the total distance a rider would travel in one rotation? (i.e., the circumference of the circle).
3. Determine the distance a rider traveled along the circumference of the Ferris wheel for each angle below:
a. 90°
b. $\quad 30^{\circ}$
c. 270°
d. 240°
e. 335° f. -60°
4. An alternative measurement for the rotation in a circle is called a radian. Go to What is a Radian? Leaving $r=1$, move the slider under change angle.
a. What does it appear one radian represents? How far around the circumference of the circle does one radian take you? If you are unsure go here.
b. How many radians is equivalent to one full rotation? If other words, $360^{\circ}=$ \qquad radians.
c. Change $r=2$ and repeat parts (a) and (b).
d. Why does the radius not affect the radian measure of the angle?
5. Convert each degree measure of an angle into radians. Keep your answer in terms of π :
a. 90°
b. 30°
c. $\quad 270^{\circ}$
d. 240°
e. 335°
f. $\quad-60^{\circ}$

- Write a note for yourself about how to convert degrees to radians.

6. Convert each radian measure of an angle into degrees.
a. $\quad \frac{\pi}{4}$
b. $\quad \pi$
C. $\frac{5 \pi}{3}$
d. $\quad-\frac{\pi}{6}$
e. $\quad \frac{7 \pi}{4}$
f. $\quad 5 \pi$

- Write a note for yourself about how to convert radians to degrees.

