Roots of Trig Functions

The Unit Circle is very helpful for understanding trigonometric functions, like $\sin x$ and $\cos x$.

Recall that an x-coordinates of the unit circle is the cosine of the central angle, and the y-coordinate of the unit circle is the sine of the central angle. ($\cos \theta=x, \sin \theta=y$)

When you graph the functions $\cos x$ or $\sin x$, what you have done is made the x-axis turn into the θ axis. You are unwrapping the circle, and placing its angles along the x-axis.

Recall also that a root of a function is a value that you plug in to get an answer of zero.

So the roots of cos are the angles with an x value of zero. Here are a few of them: 90, 270, 450,630 , etc. You can also use radians to measure the angles, so you would get: $\frac{\pi}{2}, \frac{3 \pi}{2}$, $\frac{5 \pi}{2}, \frac{7 \pi}{2}$
Similarly, the roots of $\sin x$ are the angles with a y value of zero. Here are the first few: 0,180, 360,540, etc. Remember that you can rotate more than a full circle, or you could rotate negatively. Here are the first few negatives: $0,-180,-360$, etc.

Finally, if you add two functions and get 0 , then one must be the opposite of the other. If you subtract two functions and get 0 , they must be equal.
Examples: 1. $f(x)=\cos (x)-\sin (x)$
The roots of $\cos x-\sin x$ are the angles where cosine and sine are equal. Using the unit circle, I see that at 45 , and 225 both sine and cosine are $\frac{\sqrt{2}}{2}$. I also can rotate more than a full circle, so the next two roots are 405 and 585 . The only other thing is to figure out if the graph is above or below the x axis. When I plug in $0, I$ get $\cos (0)-\sin (0)=1-0=1$. So the graph starts above.

2. $g(x)=\sin (x)+\sin (2 x)$

The roots of $\sin (x)+\sin (2 x)$ are the angles where $\sin (x)$ is the opposite of $\sin (2 x)$. So I look on the unit circle for where the y-coordinates are equal, but opposite, and where one angle is twice as large as the other. Remember also that $-0=0$ and $2(0)=0$. I see that both equal 0 at angle 0 . I also see that $\sin (120)=\frac{\sqrt{3}}{2}$ and $\sin (240)=\frac{-\sqrt{3}}{2}$. The next angle is 180 , because $\sin (180)=\sin (360)=0$. The next angle is 240 , because $\sin (240)=\frac{-\sqrt{3}}{2}$, and $\sin (480)=\frac{\sqrt{3}}{2}$.

Exercises:

1. $f(x)=\cos (x)+\cos (2 x)$
2. $g(x)=\sin (x)-\sin (2 x)$
3. $h(x)=\sin (x)+\sin (3 x)$
4. $k(x)=\sin (x)-\sin (3 x)$
