Example 10: Solve.

The shorter side of a rectangle is 3 less than the longer side. The area is <u>54</u>. Find the length and width.

b2 yac €

$$(-3)^2-4(1)(-54)$$

Practice: Solve.

1) The length of a rectangle is four feet longer than the width. The area is 21. Find the dimensions.

$$W'(W+4) = 21$$

$$W^{2} + 4w = 21$$

$$2111 - 21 = 0$$

b 2-4ac = (4)2-4(1)(-21)

$$3^{2}+4w-21=0$$
Add Mill. $21=1.2$

W = 3 l = 3+4=7

Challenge Problem:

One leg of a right triangle is 1 cm longer than the other leg. The hypotenuse measures 5 cm.

Find the measure of each leg of the triangle.

$$\frac{a^2 + b^2 = c^2}{x^2 + (x+1)^2 = 5^2}$$

$$\frac{a^2 + b^2 = c^2}{x^2 + (x+1)(x+1)} = 25$$

$$\frac{a^2 + b^2 = c^2}{x^2 + (x+1)(x+1)} = 25$$

$$\frac{b^2 + c^2 + c^2$$

number(s).

Translate the problem into a mathematical equation.

Get all terms on the same side.

Factor the difference of squares.

Set each factor equal to 0 and solve for x.

$$x^2 = 5x + 24$$

$$x^2 - 5x - 24 = 0$$

$$(x - 8)(x + 3) = 0$$

$$x - 8 = 0$$
 | $x + 3 = 0$
 $x = 8$ | $x = -3$

$$x = \{8, -3\}$$

Exit Ticket

1. The length of a rectangle is 5 meters longer than its width and the area of the rectangle is 84 meters². Which equation represents this problem if w is the width of the rectangle?

$$(1) w(w + 5) = 84$$

$$(2)$$
 $(w+5)(w-5)=84$

(3)
$$w(w + 5) + 84 = 0$$

(4)
$$w^2 - 84 = 0$$

2. When 36 is subtracted from the square of a number, the result is five times the number. What is the positive solution?

-36=5X

15