1. Use your knowledge of transformations to find the equation $y=a \sin (b x+c)+d$ of each situation described below (assume all parts of the model Ferris wheel from part 1 remain the same unless specifically stated below: Ferris Wheel starts at point A, radius of 1 meter, rotates counterclockwise in 6 minutes, center of Ferris Wheel at the water line). Use the Ferris Wheel site from part 1 as needed:
a. The Ferris wheel has a radius of 10 meters.
b. The Ferris wheel has a radius of 1 meter and completes a rotation in 3 minutes (rather than the typical 6 minutes).
c. The Ferris wheel has a radius of 10 meters and completes a rotation in 12 minutes.
d. The Ferris wheel has a radius of 3 meter and completes a rotation in 6 minutes, but the center of the wheel is 1 meter above the water line.
e. The Ferris wheel has a radius of 10 meters, completes a rotation in 12 minutes, and the center of the water wheel is 0.5 meters below the water line.
f. The Ferris wheel has a radius of 10 meters and completes a rotation in 6 minutes, but turns the opposite direction (clockwise).
g. The Ferris wheel has radius of 1 meter and makes a complete rotation (counterclockwise) in 6 minutes, but riders board the Ferris wheel at point D (so point D occurs at 0 seconds).
2. For each equation below, describe the Ferris wheel:
i. radius,
ii. time to complete one rotation,
iii. height of the center of the Ferris wheel,
iv. what point on the Ferris wheel riders board,
v. rotating clockwise or counterclockwise.
a. $y=12 \sin (x)+1$
c. $y=-3 \sin (0.25 x)$
b. $y=\sin (6 x)+8$
d. $\quad y=20 \sin (x-90)$
e. $y=10 \sin (x+60)-5$
