1. Tell whether the following are functions. Explain.

$$\{(-2,5), (-1,1), (3,1), (-1,-2)\}$$

2. Find domain and range of the given graphs below. State if each graph is a function:

- 3. Use the functions f(x) = 2|x|-5, $g(x) = x^2-3$, h(x) = 3x+5 to answer the questions below.
- a. Evaluate f(-7)
- b. Solve h(x) = -7
- c. Evaluate g(-4)

- d. Solve g(x) = 1 e. Solve f(x) = -5 f. Evaluate h(-1)

- g. Find the domain of f(x). h. Find the range of h(x) i. Find the range of g(x)

- 4. The following graph completely defines f(x).
- a. Evaluate f(8)
- b. Evaluate f(0) f(8)

c. Solve f(x) = 5

5. Find the inverse of the following functions:

a.
$$y = \frac{1}{2}x - 3$$

c.
$$h(x) = \frac{7x+18}{2}$$

b.
$$g(x) = \sqrt[3]{x} + 3$$

d.
$$f(x) = 2x^4 + 5$$

- 6. Given two function machines $f(x) = x^2 1$ and g(x) = 3(x + 2).
 - a. If the two machines are connected so that f(x) comes first, and 5 is dropped in, what comes out? (This is finding g(f(5)))

a. If the two machines are connected so that g(x) comes first, and 5 is dropped in, what comes out? (This is finding f(g(5)))

7. Given two function machines
$$f(x) = \frac{2}{x-7}$$
 and $g(x) = 2x + 5$ calculate:
b. $g(3) =$ d. $f(g(2)) =$

b.
$$g(3) =$$

d.
$$f(g(2)) =$$

c.
$$f(10) =$$

e.
$$g(f(11)) =$$

a.
$$f(x) = 3(4x + 5) - 1$$

b.
$$g(x) = \frac{\sqrt[3]{x+4}}{2}$$