\qquad
\qquad
\qquad

1) Carefully draw the graph of $y=2^{x}$, complete the table and list its features.
2) Use your knowledge of inverses to graph the inverse in a different color.
$y=2^{x}$
x-intercept: y-intercept: Domain:
Range: Asymptotes:

x	y
-2	
-1	
0	
1	
2	
3	

inverse
x-intercept: y-intercept:
Domain:
Range:
Asymptotes:

3) Why are all the y-values on the graph of $y=2^{x}$ positive?

How does this impact the graph of the inverse $y=2^{x}$?
4) For $y=2^{x}$ find as many missing x-values as you can in the table below.

x														
y	8	32	$1 / 2$	1	16	4	3	64	2	0	$1 / 4$	-1	128	39

a) Describe your thinking.
b) Which x-values are impossible to find? Why?
c) Which x-values are difficult to find? Why?
5) Using the following clues, find the missing pieces of the puzzles below. Explain how your answers make sense.

CLUES

$$
\log 8=3 \quad \log 27=3 \quad \log 25=2 \quad \log \text { OOQ4 }
$$

PUZZLES

a) $\log 16=$?
b) $\log 64=$?
c) $\log 10 \theta 2$
d) $\log _{5} ?=3$
e) $\log 81=4$
f) $\log _{90} 1 \mathrm{O}=$?
6) Logarithms are the inverse functions of exponential functions. So, every exponential equation can be re-written in its logarithmic form and every logarithmic equation can be rewritten in its exponential form. For example,

We read the second equation as:
"The log base 4 of 64 is $3 . "$

Using this information complete this table:

Exponential form	Logarithmic Form
$\mathrm{y}=5^{\mathrm{x}}$	
$8^{\mathrm{x}}=\mathrm{y}$	$\mathrm{y}=\log _{7}(\mathrm{x})$
$\mathrm{A}^{\mathrm{K}}=\mathrm{C}$	
	$\mathrm{K}=\log _{\mathrm{A}} \mathrm{A}(\mathrm{C})$
	$\log _{1 / 2}(\mathrm{~K})=\mathrm{N}$

7) Write the equation for the inverse of $y=2^{x}$.
